Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

What is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence

Oct 01, 2021
Qiao Lan, Dingzhu Wen, Zezhong Zhang, Qunsong Zeng, Xu Chen, Petar Popovski, Kaibin Huang

In 1940s, Claude Shannon developed the information theory focusing on quantifying the maximum data rate that can be supported by a communication channel. Guided by this, the main theme of wireless system design up until 5G was the data rate maximization. In his theory, the semantic aspect and meaning of messages were treated as largely irrelevant to communication. The classic theory started to reveal its limitations in the modern era of machine intelligence, consisting of the synergy between IoT and AI. By broadening the scope of the classic framework, in this article we present a view of semantic communication (SemCom) and conveying meaning through the communication systems. We address three communication modalities, human-to-human (H2H), human-to-machine (H2M), and machine-to-machine (M2M) communications. The latter two, the main theme of the article, represent the paradigm shift in communication and computing. H2M SemCom refers to semantic techniques for conveying meanings understandable by both humans and machines so that they can interact. M2M SemCom refers to effectiveness techniques for efficiently connecting machines such that they can effectively execute a specific computation task in a wireless network. The first part of the article introduces SemCom principles including encoding, system architecture, and layer-coupling and end-to-end design approaches. The second part focuses on specific techniques for application areas of H2M (human and AI symbiosis, recommendation, etc.) and M2M SemCom (distributed learning, split inference, etc.) Finally, we discuss the knowledge graphs approach for designing SemCom systems. We believe that this comprehensive introduction will provide a useful guide into the emerging area of SemCom that is expected to play an important role in 6G featuring connected intelligence and integrated sensing, computing, communication, and control.

* This is an invited paper for Journal of Communications and Information Networks 

  Access Paper or Ask Questions

Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks

Sep 30, 2021
Junaid Malik, Ozer Can Devecioglu, Serkan Kiranyaz, Turker Ince, Moncef Gabbouj

Despite the proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, compact 1D Convolutional Neural Networks (CNNs) have achieved the state-of-the-art performance level for the accurate classification of ventricular and supraventricular ectopic beats. However, several studies have demonstrated the fact that the learning performance of the conventional CNNs is limited because they are homogenous networks with a basic (linear) neuron model. In order to address this deficiency and further boost the patient-specific ECG classification performance, in this study, we propose 1D Self-organized Operational Neural Networks (1D Self-ONNs). Due to its self-organization capability, Self-ONNs have the utmost advantage and superiority over conventional ONNs where the prior operator search within the operator set library to find the best possible set of operators is entirely avoided. As the first study where 1D Self-ONNs are ever proposed for a classification task, our results over the MIT-BIH arrhythmia benchmark database demonstrate that 1D Self-ONNs can surpass 1D CNNs with a significant margin while having a similar computational complexity. Under AAMI recommendations and with minimal common training data used, over the entire MIT-BIH dataset 1D Self-ONNs have achieved 98% and 99.04% average accuracies, 76.6% and 93.7% average F1 scores on supra-ventricular and ventricular ectopic beat (VEB) classifications, respectively, which is the highest performance level ever reported.

  Access Paper or Ask Questions

TrUMAn: Trope Understanding in Movies and Animations

Aug 11, 2021
Hung-Ting Su, Po-Wei Shen, Bing-Chen Tsai, Wen-Feng Cheng, Ke-Jyun Wang, Winston H. Hsu

Understanding and comprehending video content is crucial for many real-world applications such as search and recommendation systems. While recent progress of deep learning has boosted performance on various tasks using visual cues, deep cognition to reason intentions, motivation, or causality remains challenging. Existing datasets that aim to examine video reasoning capability focus on visual signals such as actions, objects, relations, or could be answered utilizing text bias. Observing this, we propose a novel task, along with a new dataset: Trope Understanding in Movies and Animations (TrUMAn), intending to evaluate and develop learning systems beyond visual signals. Tropes are frequently used storytelling devices for creative works. By coping with the trope understanding task and enabling the deep cognition skills of machines, we are optimistic that data mining applications and algorithms could be taken to the next level. To tackle the challenging TrUMAn dataset, we present a Trope Understanding and Storytelling (TrUSt) with a new Conceptual Storyteller module, which guides the video encoder by performing video storytelling on a latent space. The generated story embedding is then fed into the trope understanding model to provide further signals. Experimental results demonstrate that state-of-the-art learning systems on existing tasks reach only 12.01% of accuracy with raw input signals. Also, even in the oracle case with human-annotated descriptions, BERT contextual embedding achieves at most 28% of accuracy. Our proposed TrUSt boosts the model performance and reaches 13.94% performance. We also provide detailed analysis to pave the way for future research. TrUMAn is publicly available at:

* CIKM 2021. The first two authors contributed equally to this work 

  Access Paper or Ask Questions

A Survey of Evaluation Metrics Used for NLG Systems

Oct 05, 2020
Ananya B. Sai, Akash Kumar Mohankumar, Mitesh M. Khapra

The success of Deep Learning has created a surge in interest in a wide a range of Natural Language Generation (NLG) tasks. Deep Learning has not only pushed the state of the art in several existing NLG tasks but has also facilitated researchers to explore various newer NLG tasks such as image captioning. Such rapid progress in NLG has necessitated the development of accurate automatic evaluation metrics that would allow us to track the progress in the field of NLG. However, unlike classification tasks, automatically evaluating NLG systems in itself is a huge challenge. Several works have shown that early heuristic-based metrics such as BLEU, ROUGE are inadequate for capturing the nuances in the different NLG tasks. The expanding number of NLG models and the shortcomings of the current metrics has led to a rapid surge in the number of evaluation metrics proposed since 2014. Moreover, various evaluation metrics have shifted from using pre-determined heuristic-based formulae to trained transformer models. This rapid change in a relatively short time has led to the need for a survey of the existing NLG metrics to help existing and new researchers to quickly come up to speed with the developments that have happened in NLG evaluation in the last few years. Through this survey, we first wish to highlight the challenges and difficulties in automatically evaluating NLG systems. Then, we provide a coherent taxonomy of the evaluation metrics to organize the existing metrics and to better understand the developments in the field. We also describe the different metrics in detail and highlight their key contributions. Later, we discuss the main shortcomings identified in the existing metrics and describe the methodology used to evaluate evaluation metrics. Finally, we discuss our suggestions and recommendations on the next steps forward to improve the automatic evaluation metrics.

* A condensed version of this paper is submitted to ACM CSUR 

  Access Paper or Ask Questions

Distributed data analytics

Mar 26, 2022
Richard Mortier, Hamed Haddadi, Sandra Servia, Liang Wang

Machine Learning (ML) techniques have begun to dominate data analytics applications and services. Recommendation systems are a key component of online service providers. The financial industry has adopted ML to harness large volumes of data in areas such as fraud detection, risk-management, and compliance. Deep Learning is the technology behind voice-based personal assistants, etc. Deployment of ML technologies onto cloud computing infrastructures has benefited numerous aspects of our daily life. The advertising and associated online industries in particular have fuelled a rapid rise the in deployment of personal data collection and analytics tools. Traditionally, behavioural analytics relies on collecting vast amounts of data in centralised cloud infrastructure before using it to train machine learning models that allow user behaviour and preferences to be inferred. A contrasting approach, distributed data analytics, where code and models for training and inference are distributed to the places where data is collected, has been boosted by two recent, ongoing developments: increased processing power and memory capacity available in user devices at the edge of the network, such as smartphones and home assistants; and increased sensitivity to the highly intrusive nature of many of these devices and services and the attendant demands for improved privacy. Indeed, the potential for increased privacy is not the only benefit of distributing data analytics to the edges of the network: reducing the movement of large volumes of data can also improve energy efficiency, helping to ameliorate the ever increasing carbon footprint of our digital infrastructure, enabling much lower latency for service interactions than is possible when services are cloud-hosted. These approaches often introduce challenges in privacy, utility, and efficiency trade-offs, while having to ensure fruitful user engagement.

* Accepted as Chapter 8 of "Privacy by Design for the Internet of Things: Building accountability and security" 

  Access Paper or Ask Questions

Serverless Model Serving for Data Science

Mar 04, 2021
Yuncheng Wu, Tien Tuan Anh Dinh, Guoyu Hu, Meihui Zhang, Yeow Meng Chee, Beng Chin Ooi

Machine learning (ML) is an important part of modern data science applications. Data scientists today have to manage the end-to-end ML life cycle that includes both model training and model serving, the latter of which is essential, as it makes their works available to end-users. Systems for model serving require high performance, low cost, and ease of management. Cloud providers are already offering model serving options, including managed services and self-rented servers. Recently, serverless computing, whose advantages include high elasticity and fine-grained cost model, brings another possibility for model serving. In this paper, we study the viability of serverless as a mainstream model serving platform for data science applications. We conduct a comprehensive evaluation of the performance and cost of serverless against other model serving systems on two clouds: Amazon Web Service (AWS) and Google Cloud Platform (GCP). We find that serverless outperforms many cloud-based alternatives with respect to cost and performance. More interestingly, under some circumstances, it can even outperform GPU-based systems for both average latency and cost. These results are different from previous works' claim that serverless is not suitable for model serving, and are contrary to the conventional wisdom that GPU-based systems are better for ML workloads than CPU-based systems. Other findings include a large gap in cold start time between AWS and GCP serverless functions, and serverless' low sensitivity to changes in workloads or models. Our evaluation results indicate that serverless is a viable option for model serving. Finally, we present several practical recommendations for data scientists on how to use serverless for scalable and cost-effective model serving.

* 10 pages 

  Access Paper or Ask Questions

Method and Dataset Entity Mining in Scientific Literature: A CNN + Bi-LSTM Model with Self-attention

Oct 26, 2020
Linlin Hou, Ji Zhang, Ou Wu, Ting Yu, Zhen Wang, Zhao Li, Jianliang Gao, Yingchun Ye, Rujing Yao

Literature analysis facilitates researchers to acquire a good understanding of the development of science and technology. The traditional literature analysis focuses largely on the literature metadata such as topics, authors, abstracts, keywords, references, etc., and little attention was paid to the main content of papers. In many scientific domains such as science, computing, engineering, etc., the methods and datasets involved in the scientific papers published in those domains carry important information and are quite useful for domain analysis as well as algorithm and dataset recommendation. In this paper, we propose a novel entity recognition model, called MDER, which is able to effectively extract the method and dataset entities from the main textual content of scientific papers. The model utilizes rule embedding and adopts a parallel structure of CNN and Bi-LSTM with the self-attention mechanism. We evaluate the proposed model on datasets which are constructed from the published papers of four research areas in computer science, i.e., NLP, CV, Data Mining and AI. The experimental results demonstrate that our model performs well in all the four areas and it features a good learning capacity for cross-area learning and recognition. We also conduct experiments to evaluate the effectiveness of different building modules within our model which indicate that the importance of different building modules in collectively contributing to the good entity recognition performance as a whole. The data augmentation experiments on our model demonstrated that data augmentation positively contributes to model training, making our model much more robust in dealing with the scenarios where only small number of training samples are available. We finally apply our model on PAKDD papers published from 2009-2019 to mine insightful results from scientific papers published in a longer time span.

  Access Paper or Ask Questions

Deep Reinforcement Learning Algorithm for Dynamic Pricing of Express Lanes with Multiple Access Locations

Sep 10, 2019
Venktesh Pandey, Evana Wang, Stephen D. Boyles

This article develops a deep reinforcement learning (Deep-RL) framework for dynamic pricing on managed lanes with multiple access locations and heterogeneity in travelers' value of time, origin, and destination. This framework relaxes assumptions in the literature by considering multiple origins and destinations, multiple access locations to the managed lane, en route diversion of travelers, partial observability of the sensor readings, and stochastic demand and observations. The problem is formulated as a partially observable Markov decision process (POMDP) and policy gradient methods are used to determine tolls as a function of real-time observations. Tolls are modeled as continuous and stochastic variables, and are determined using a feedforward neural network. The method is compared against a feedback control method used for dynamic pricing. We show that Deep-RL is effective in learning toll policies for maximizing revenue, minimizing total system travel time, and other joint weighted objectives, when tested on real-world transportation networks. The Deep-RL toll policies outperform the feedback control heuristic for the revenue maximization objective by generating revenues up to 9.5% higher than the heuristic and for the objective minimizing total system travel time (TSTT) by generating TSTT up to 10.4% lower than the heuristic. We also propose reward shaping methods for the POMDP to overcome the undesired behavior of toll policies, like the jam-and-harvest behavior of revenue-maximizing policies. Additionally, we test transferability of the algorithm trained on one set of inputs for new input distributions and offer recommendations on real-time implementations of Deep-RL algorithms. The source code for our experiments is available online at

  Access Paper or Ask Questions

TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases from Chest X-ray Images

Apr 06, 2021
Alexander Wong, James Ren Hou Lee, Hadi Rahmat-Khah, Ali Sabri, Amer Alaref

Tuberculosis (TB) remains a global health problem, and is the leading cause of death from an infectious disease. A crucial step in the treatment of tuberculosis is screening high risk populations and the early detection of the disease, with chest x-ray (CXR) imaging being the most widely-used imaging modality. As such, there has been significant recent interest in artificial intelligence-based TB screening solutions for use in resource-limited scenarios where there is a lack of trained healthcare workers with expertise in CXR interpretation. Motivated by this pressing need and the recent recommendation by the World Health Organization (WHO) for the use of computer-aided diagnosis of TB, we introduce TB-Net, a self-attention deep convolutional neural network tailored for TB case screening. More specifically, we leveraged machine-driven design exploration to build a highly customized deep neural network architecture with attention condensers. We conducted an explainability-driven performance validation process to validate TB-Net's decision-making behaviour. Experiments using a tuberculosis CXR benchmark dataset showed that the proposed TB-Net is able to achieve accuracy/sensitivity/specificity of 99.86%/100.0%/99.71%. Radiologist validation was conducted on select cases by two board-certified radiologists with over 10 and 19 years of experience, respectively, and showed consistency between radiologist interpretation and critical factors leveraged by TB-Net for TB case detection for the case where radiologists identified anomalies. While not a production-ready solution, we hope that the open-source release of TB-Net as part of the COVID-Net initiative will support researchers, clinicians, and citizen data scientists in advancing this field in the fight against this global public health crisis.

* 9 pages 

  Access Paper or Ask Questions