Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Deep neural network marketplace recommenders in online experiments

Sep 06, 2018
Simen Eide, Ning Zhou

Recommendations are broadly used in marketplaces to match users with items relevant to their interests and needs. To understand user intent and tailor recommendations to their needs, we use deep learning to explore various heterogeneous data available in marketplaces. This paper focuses on the challenge of measuring recommender performance and summarizes the online experiment results with several promising types of deep neural network recommenders - hybrid item representation models combining features from user engagement and content, sequence-based models, and multi-armed bandit models that optimize user engagement by re-ranking proposals from multiple submodels. The recommenders are currently running in production at the leading Norwegian marketplace FINN.no and serves over one million visitors everyday.


  Access Paper or Ask Questions

A Model-Agnostic Causal Learning Framework for Recommendation using Search Data

Feb 10, 2022
Zihua Si, Xueran Han, Xiao Zhang, Jun Xu, Yue Yin, Yang Song, Ji-Rong Wen

Machine-learning based recommender systems(RSs) has become an effective means to help people automatically discover their interests. Existing models often represent the rich information for recommendation, such as items, users, and contexts, as embedding vectors and leverage them to predict users' feedback. In the view of causal analysis, the associations between these embedding vectors and users' feedback are a mixture of the causal part that describes why an item is preferred by a user, and the non-causal part that merely reflects the statistical dependencies between users and items, for example, the exposure mechanism, public opinions, display position, etc. However, existing RSs mostly ignored the striking differences between the causal parts and non-causal parts when using these embedding vectors. In this paper, we propose a model-agnostic framework named IV4Rec that can effectively decompose the embedding vectors into these two parts, hence enhancing recommendation results. Specifically, we jointly consider users' behaviors in search scenarios and recommendation scenarios. Adopting the concepts in causal analysis, we embed users' search behaviors as instrumental variables (IVs), to help decompose original embedding vectors in recommendation, i.e., treatments. IV4Rec then combines the two parts through deep neural networks and uses the combined results for recommendation. IV4Rec is model-agnostic and can be applied to a number of existing RSs such as DIN and NRHUB. Experimental results on both public and proprietary industrial datasets demonstrate that IV4Rec consistently enhances RSs and outperforms a framework that jointly considers search and recommendation.

* 9 pages, 7 figures, accepted by The Web Conference 2022 

  Access Paper or Ask Questions

Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

Oct 08, 2021
Huance Xu, Chao Huang, Yong Xu, Lianghao Xia, Hao Xing, Dawei Yin

Social recommendation which aims to leverage social connections among users to enhance the recommendation performance. With the revival of deep learning techniques, many efforts have been devoted to developing various neural network-based social recommender systems, such as attention mechanisms and graph-based message passing frameworks. However, two important challenges have not been well addressed yet: (i) Most of existing social recommendation models fail to fully explore the multi-type user-item interactive behavior as well as the underlying cross-relational inter-dependencies. (ii) While the learned social state vector is able to model pair-wise user dependencies, it still has limited representation capacity in capturing the global social context across users. To tackle these limitations, we propose a new Social Recommendation framework with Hierarchical Graph Neural Networks (SR-HGNN). In particular, we first design a relation-aware reconstructed graph neural network to inject the cross-type collaborative semantics into the recommendation framework. In addition, we further augment SR-HGNN with a social relation encoder based on the mutual information learning paradigm between low-level user embeddings and high-level global representation, which endows SR-HGNN with the capability of capturing the global social contextual signals. Empirical results on three public benchmarks demonstrate that SR-HGNN significantly outperforms state-of-the-art recommendation methods. Source codes are available at: https://github.com/xhcdream/SR-HGNN.

* Published as a full paper at ICDM 2020 

  Access Paper or Ask Questions

Secure Social Recommendation based on Secret Sharing

Mar 05, 2020
Chaochao Chen, Liang Li, Bingzhe Wu, Cheng Hong, Li Wang, Jun Zhou

Nowadays, privacy preserving machine learning has been drawing much attention in both industry and academy. Meanwhile, recommender systems have been extensively adopted by many commercial platforms (e.g. Amazon) and they are mainly built based on user-item interactions. Besides, social platforms (e.g. Facebook) have rich resources of user social information. It is well known that social information, which is rich on social platforms such as Facebook, are useful to recommender systems. It is anticipated to combine the social information with the user-item ratings to improve the overall recommendation performance. Most existing recommendation models are built based on the assumptions that the social information are available. However, different platforms are usually reluctant to (or cannot) share their data due to certain concerns. In this paper, we first propose a SEcure SOcial RECommendation (SeSoRec) framework which can (1) collaboratively mine knowledge from social platform to improve the recommendation performance of the rating platform, and (2) securely keep the raw data of both platforms. We then propose a Secret Sharing based Matrix Multiplication (SSMM) protocol to optimize SeSoRec and prove its correctness and security theoretically. By applying minibatch gradient descent, SeSoRec has linear time complexities in terms of both computation and communication. The comprehensive experimental results on three real-world datasets demonstrate the effectiveness of our proposed SeSoRec and SSMM.

* Accepted by ECAI'20 

  Access Paper or Ask Questions

Neural Educational Recommendation Engine (NERE)

Sep 21, 2018
Moin Nadeem, Dustin Stansbury, Shane Mooney

Quizlet is the most popular online learning tool in the United States, and is used by over 2/3 of high school students, and 1/2 of college students. With more than 95% of Quizlet users reporting improved grades as a result, the platform has become the de-facto tool used in millions of classrooms. In this paper, we explore the task of recommending suitable content for a student to study, given their prior interests, as well as what their peers are studying. We propose a novel approach, i.e. Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. We have found that this approach better captures social factors that are more aligned with learning. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We train NERE by jointly learning the user embeddings and content embeddings, and attempt to predict the content embedding for the final timestamp. We also develop a confidence estimator for our neural network, which is a crucial requirement for productionizing this model. We apply NERE to Quizlet's proprietary dataset, and present our results. We achieved an R^2 score of 0.81 in the content embedding space, and a recall score of 54% on our 100 nearest neighbors. This vastly exceeds the [email protected] score of 12% that a standard matrix-factorization approach provides. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.


  Access Paper or Ask Questions

Graph Augmentation-Free Contrastive Learning for Recommendation

Dec 16, 2021
Junliang Yu, Hongzhi Yin, Xin Xia, Lizhen Cui, Quoc Viet Hung Nguyen

Contrastive learning (CL) recently has received considerable attention in the field of recommendation, since it can greatly alleviate the data sparsity issue and improve recommendation performance in a self-supervised manner. A typical way to apply CL to recommendation is conducting edge/node dropout on the user-item bipartite graph to augment the graph data and then maximizing the correspondence between representations of the same user/item augmentations under a joint optimization setting. Despite the encouraging results brought by CL, however, what underlies the performance gains still remains unclear. In this paper, we first experimentally demystify that the uniformity of the learned user/item representation distributions on the unit hypersphere is closely related to the recommendation performance. Based on the experimental findings, we propose a graph augmentation-free CL method to simply adjust the uniformity by adding uniform noises to the original representations for data augmentations, and enhance recommendation from a geometric view. Specifically, the constant graph perturbation during training is not required in our method and hence the positive and negative samples for CL can be generated on-the-fly. The experimental results on three benchmark datasets demonstrate that the proposed method has distinct advantages over its graph augmentation-based counterparts in terms of both the ability to improve recommendation performance and the running/convergence speed. The code is released at https://github.com/Coder-Yu/QRec.


  Access Paper or Ask Questions

Distributed Online Learning in Social Recommender Systems

Jan 22, 2014
Cem Tekin, Simpson Zhang, Mihaela van der Schaar

In this paper, we consider decentralized sequential decision making in distributed online recommender systems, where items are recommended to users based on their search query as well as their specific background including history of bought items, gender and age, all of which comprise the context information of the user. In contrast to centralized recommender systems, in which there is a single centralized seller who has access to the complete inventory of items as well as the complete record of sales and user information, in decentralized recommender systems each seller/learner only has access to the inventory of items and user information for its own products and not the products and user information of other sellers, but can get commission if it sells an item of another seller. Therefore the sellers must distributedly find out for an incoming user which items to recommend (from the set of own items or items of another seller), in order to maximize the revenue from own sales and commissions. We formulate this problem as a cooperative contextual bandit problem, analytically bound the performance of the sellers compared to the best recommendation strategy given the complete realization of user arrivals and the inventory of items, as well as the context-dependent purchase probabilities of each item, and verify our results via numerical examples on a distributed data set adapted based on Amazon data. We evaluate the dependence of the performance of a seller on the inventory of items the seller has, the number of connections it has with the other sellers, and the commissions which the seller gets by selling items of other sellers to its users.

* Selected Topics in Signal Processing, IEEE Journal of , vol.8, no.4, pp.638,652, Aug. 2014 

  Access Paper or Ask Questions

Training Large-Scale News Recommenders with Pretrained Language Models in the Loop

Mar 05, 2021
Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, Xing Xie

News recommendation calls for deep insights of news articles' underlying semantics. Therefore, pretrained language models (PLMs), like BERT and RoBERTa, may substantially contribute to the recommendation quality. However, it's extremely challenging to have news recommenders trained together with such big models: the learning of news recommenders requires intensive news encoding operations, whose cost is prohibitive if PLMs are used as the news encoder. In this paper, we propose a novel framework, {SpeedyFeed}, which efficiently trains PLMs-based news recommenders of superior quality. SpeedyFeed is highlighted for its light-weighted encoding pipeline, which gives rise to three major advantages. Firstly, it makes the intermedia results fully reusable for the training workflow, which removes most of the repetitive but redundant encoding operations. Secondly, it improves the data efficiency of the training workflow, where non-informative data can be eliminated from encoding. Thirdly, it further saves the cost by leveraging simplified news encoding and compact news representation. Extensive experiments show that SpeedyFeed leads to more than 100$\times$ acceleration of the training process, which enables big models to be trained efficiently and effectively over massive user data. The well-trained PLMs-based model from SpeedyFeed demonstrates highly competitive performance, where it outperforms the state-of-the-art news recommenders with significant margins. SpeedyFeed is also a model-agnostic framework, which is potentially applicable to a wide spectrum of content-based recommender systems; therefore, the whole framework is open-sourced to facilitate the progress in related areas.


  Access Paper or Ask Questions

Deep Adversarial Social Recommendation

May 30, 2019
Wenqi Fan, Tyler Derr, Yao Ma, Jianping Wang, Jiliang Tang, Qing Li

Recent years have witnessed rapid developments on social recommendation techniques for improving the performance of recommender systems due to the growing influence of social networks to our daily life. The majority of existing social recommendation methods unify user representation for the user-item interactions (item domain) and user-user connections (social domain). However, it may restrain user representation learning in each respective domain, since users behave and interact differently in the two domains, which makes their representations to be heterogeneous. In addition, most of traditional recommender systems can not efficiently optimize these objectives, since they utilize negative sampling technique which is unable to provide enough informative guidance towards the training during the optimization process. In this paper, to address the aforementioned challenges, we propose a novel deep adversarial social recommendation framework DASO. It adopts a bidirectional mapping method to transfer users' information between social domain and item domain using adversarial learning. Comprehensive experiments on two real-world datasets show the effectiveness of the proposed framework.

* Accepted by International Joint Conference on Artificial Intelligence (IJCAI 2019) 

  Access Paper or Ask Questions

<<
37
38
39
40
41
42
43
44
45
46
47
48
49
>>