Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Goal-Oriented Next Best Activity Recommendation using Reinforcement Learning

May 06, 2022
Prerna Agarwal, Avani Gupta, Renuka Sindhgatta, Sampath Dechu

Recommending a sequence of activities for an ongoing case requires that the recommendations conform to the underlying business process and meet the performance goal of either completion time or process outcome. Existing work on next activity prediction can predict the future activity but cannot provide guarantees of the prediction being conformant or meeting the goal. Hence, we propose a goal-oriented next best activity recommendation. Our proposed framework uses a deep learning model to predict the next best activity and an estimated value of a goal given the activity. A reinforcement learning method explores the sequence of activities based on the estimates likely to meet one or more goals. We further address a real-world problem of multiple goals by introducing an additional reward function to balance the outcome of a recommended activity and satisfy the goal. We demonstrate the effectiveness of the proposed method on four real-world datasets with different characteristics. The results show that the recommendations from our proposed approach outperform in goal satisfaction and conformance compared to the existing state-of-the-art next best activity recommendation techniques.

  Access Paper or Ask Questions

Deep Autoencoder for Recommender Systems: Parameter Influence Analysis

Dec 25, 2018
Dai Hoang Tran, Zawar Hussain, Wei Emma Zhang, Nguyen Lu Dang Khoa, Nguyen H. Tran, Quan Z. Sheng

Recommender systems have recently attracted many researchers in the deep learning community. The state-of-the-art deep neural network models used in recommender systems are typically multilayer perceptron and deep Autoencoder (DAE), among which DAE usually shows better performance due to its superior capability to reconstruct the inputs. However, we found existing DAE recommendation systems that have similar implementations on similar datasets result in vastly different parameter settings. In this work, we have built a flexible DAE model, named FlexEncoder that uses configurable parameters and unique features to analyse the parameter influences on the prediction accuracy of recommender systems. This will help us identify the best-performance parameters given a dataset. Extensive evaluation on the MovieLens datasets are conducted, which drives our conclusions on the influences of DAE parameters. Specifically, we find that DAE parameters strongly affect the prediction accuracy of the recommender systems, and the effect is transferable to similar datasets in a larger size. We open our code to public which could benefit both new users for DAE -- they can quickly understand how DAE works for recommendation systems, and experienced DAE users -- it easier for them to tune the parameters on different datasets.

* 11 pages, ACIS 2018, 

  Access Paper or Ask Questions

Holistic Combination of Structural and Textual Code Information for Context based API Recommendation

Oct 15, 2020
Chi Chen, Xin Peng, Zhenchang Xing, Jun Sun, Xin Wang, Yifan Zhao, Wenyun Zhao

Context based API recommendation is an important way to help developers find the needed APIs effectively and efficiently. For effective API recommendation, we need not only a joint view of both structural and textual code information, but also a holistic view of correlated API usage in control and data flow graph as a whole. Unfortunately, existing API recommendation methods exploit structural or textual code information separately. In this work, we propose a novel API recommendation approach called APIRec-CST (API Recommendation by Combining Structural and Textual code information). APIRec-CST is a deep learning model that combines the API usage with the text information in the source code based on an API Context Graph Network and a Code Token Network that simultaneously learn structural and textual features for API recommendation. We apply APIRec-CST to train a model for JDK library based on 1,914 open-source Java projects and evaluate the accuracy and MRR (Mean Reciprocal Rank) of API recommendation with another 6 open-source projects. The results show that our approach achieves respectively a top-1, top-5, top-10 accuracy and MRR of 60.3%, 81.5%, 87.7% and 69.4%, and significantly outperforms an existing graph-based statistical approach and a tree-based deep learning approach for API recommendation. A further analysis shows that textual code information makes sense and improves the accuracy and MRR. We also conduct a user study in which two groups of students are asked to finish 6 programming tasks with or without our APIRec-CST plugin. The results show that APIRec-CST can help the students to finish the tasks faster and more accurately and the feedback on the usability is overwhelmingly positive.

  Access Paper or Ask Questions

J-Recs: Principled and Scalable Recommendation Justification

Nov 11, 2020
Namyong Park, Andrey Kan, Christos Faloutsos, Xin Luna Dong

Online recommendation is an essential functionality across a variety of services, including e-commerce and video streaming, where items to buy, watch, or read are suggested to users. Justifying recommendations, i.e., explaining why a user might like the recommended item, has been shown to improve user satisfaction and persuasiveness of the recommendation. In this paper, we develop a method for generating post-hoc justifications that can be applied to the output of any recommendation algorithm. Existing post-hoc methods are often limited in providing diverse justifications, as they either use only one of many available types of input data, or rely on the predefined templates. We address these limitations of earlier approaches by developing J-Recs, a method for producing concise and diverse justifications. J-Recs is a recommendation model-agnostic method that generates diverse justifications based on various types of product and user data (e.g., purchase history and product attributes). The challenge of jointly processing multiple types of data is addressed by designing a principled graph-based approach for justification generation. In addition to theoretical analysis, we present an extensive evaluation on synthetic and real-world data. Our results show that J-Recs satisfies desirable properties of justifications, and efficiently produces effective justifications, matching user preferences up to 20% more accurately than baselines.

* ICDM 2020 

  Access Paper or Ask Questions

UPRec: User-Aware Pre-training for Recommender Systems

Feb 22, 2021
Chaojun Xiao, Ruobing Xie, Yuan Yao, Zhiyuan Liu, Maosong Sun, Xu Zhang, Leyu Lin

Existing sequential recommendation methods rely on large amounts of training data and usually suffer from the data sparsity problem. To tackle this, the pre-training mechanism has been widely adopted, which attempts to leverage large-scale data to perform self-supervised learning and transfer the pre-trained parameters to downstream tasks. However, previous pre-trained models for recommendation focus on leverage universal sequence patterns from user behaviour sequences and item information, whereas ignore capturing personalized interests with the heterogeneous user information, which has been shown effective in contributing to personalized recommendation. In this paper, we propose a method to enhance pre-trained models with heterogeneous user information, called User-aware Pre-training for Recommendation (UPRec). Specifically, UPRec leverages the user attributes andstructured social graphs to construct self-supervised objectives in the pre-training stage and proposes two user-aware pre-training tasks. Comprehensive experimental results on several real-world large-scale recommendation datasets demonstrate that UPRec can effectively integrate user information into pre-trained models and thus provide more appropriate recommendations for users.

* This paper has been submitted to IEEE TKDE 

  Access Paper or Ask Questions

Denoising Neural Network for News Recommendation with Positive and Negative Implicit Feedback

Apr 09, 2022
Yunfan Hu, Zhaopeng Qiu, Xian Wu

News recommendation is different from movie or e-commercial recommendation as people usually do not grade the news. Therefore, user feedback for news is always implicit (click behavior, reading time, etc). Inevitably, there are noises in implicit feedback. On one hand, the user may exit immediately after clicking the news as he dislikes the news content, leaving the noise in his positive implicit feedback; on the other hand, the user may be recommended multiple interesting news at the same time and only click one of them, producing the noise in his negative implicit feedback. Opposite implicit feedback could construct more integrated user preferences and help each other to minimize the noise influence. Previous works on news recommendation only used positive implicit feedback and suffered from the noise impact. In this paper, we propose a denoising neural network for news recommendation with positive and negative implicit feedback, named DRPN. DRPN utilizes both feedback for recommendation with a module to denoise both positive and negative implicit feedback to further enhance the performance. Experiments on the real-world large-scale dataset demonstrate the state-of-the-art performance of DRPN.

* Accepted by Findings of NAACL 2022 

  Access Paper or Ask Questions

Bias: Friend or Foe? User Acceptance of Gender Stereotypes in Automated Career Recommendations

Jun 13, 2021
Clarice Wang, Kathryn Wang, Andrew Bian, Rashidul Islam, Kamrun Naher Keya, James Foulde, Shimei Pan

Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g. along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we show that a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using career recommendation as a case study, we build a fair AI career recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, our results demonstrate we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans.

  Access Paper or Ask Questions

Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Dec 02, 2021
Yang Yu, Fangzhao Wu, Chuhan Wu, Jingwei Yi, Tao Qi, Qi Liu

Personalized news recommendation has been widely adopted to improve user experience. Recently, pre-trained language models (PLMs) have demonstrated the great capability of natural language understanding and the potential of improving news modeling for news recommendation. However, existing PLMs are usually pre-trained on general corpus such as BookCorpus and Wikipedia, which have some gaps with the news domain. Directly finetuning PLMs with the news recommendation task may be sub-optimal for news understanding. Besides, PLMs usually contain a large volume of parameters and have high computational overhead, which imposes a great burden on the low-latency online services. In this paper, we propose Tiny-NewsRec, which can improve both the effectiveness and the efficiency of PLM-based news recommendation. In order to reduce the domain gap between general corpora and the news data, we propose a self-supervised domain-specific post-training method to adapt the generally pre-trained language models to the news domain with the task of news title and news body matching. To improve the efficiency of PLM-based news recommendation while maintaining the performance, we propose a two-stage knowledge distillation method. In the first stage, we use the domain-specific teacher PLM to guide the student model for news semantic modeling. In the second stage, we use a multi-teacher knowledge distillation framework to transfer the comprehensive knowledge from a set of teacher models finetuned for news recommendation to the student. Experiments on two real-world datasets show that our methods can achieve better performance in news recommendation with smaller models.

* 11 pages, 10 figures 

  Access Paper or Ask Questions

Session-aware Recommendation: A Surprising Quest for the State-of-the-art

Nov 06, 2020
Sara Latifi, Noemi Mauro, Dietmar Jannach

Recommender systems are designed to help users in situations of information overload. In recent years, we observed increased interest in session-based recommendation scenarios, where the problem is to make item suggestions to users based only on interactions observed in an ongoing session. However, in cases where interactions from previous user sessions are available, the recommendations can be personalized according to the users' long-term preferences, a process called session-aware recommendation. Today, research in this area is scattered and many existing works only compare session-aware with session-based models. This makes it challenging to understand what represents the state-of-the-art. To close this research gap, we benchmarked recent session-aware algorithms against each other and against a number of session-based recommendation algorithms and trivial extensions thereof. Our comparison, to some surprise, revealed that (i) item simple techniques based on nearest neighbors consistently outperform recent neural techniques and that (ii) session-aware models were mostly not better than approaches that do not use long-term preference information. Our work therefore not only points to potential methodological issues where new methods are compared to weak baselines, but also indicates that there remains a huge potential for more sophisticated session-aware recommendation algorithms.

  Access Paper or Ask Questions

Cross-domain User Preference Learning for Cold-start Recommendation

Dec 07, 2021
Huiling Zhou, Jie Liu, Zhikang Li, Jin Yu, Hongxia Yang

Cross-domain cold-start recommendation is an increasingly emerging issue for recommender systems. Existing works mainly focus on solving either cross-domain user recommendation or cold-start content recommendation. However, when a new domain evolves at its early stage, it has potential users similar to the source domain but with much fewer interactions. It is critical to learn a user's preference from the source domain and transfer it into the target domain, especially on the newly arriving contents with limited user feedback. To bridge this gap, we propose a self-trained Cross-dOmain User Preference LEarning (COUPLE) framework, targeting cold-start recommendation with various semantic tags, such as attributes of items or genres of videos. More specifically, we consider three levels of preferences, including user history, user content and user group to provide reliable recommendation. With user history represented by a domain-aware sequential model, a frequency encoder is applied to the underlying tags for user content preference learning. Then, a hierarchical memory tree with orthogonal node representation is proposed to further generalize user group preference across domains. The whole framework updates in a contrastive way with a First-In-First-Out (FIFO) queue to obtain more distinctive representations. Extensive experiments on two datasets demonstrate the efficiency of COUPLE in both user and content cold-start situations. By deploying an online A/B test for a week, we show that the Click-Through-Rate (CTR) of COUPLE is superior to other baselines used on Taobao APP. Now the method is serving online for the cross-domain cold micro-video recommendation.

  Access Paper or Ask Questions