Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

A Machine learning approach for rapid disaster response based on multi-modal data. The case of housing & shelter needs

Jul 29, 2021
Karla Saldana Ochoa Tina Comes

Along with climate change, more frequent extreme events, such as flooding and tropical cyclones, threaten the livelihoods and wellbeing of poor and vulnerable populations. One of the most immediate needs of people affected by a disaster is finding shelter. While the proliferation of data on disasters is already helping to save lives, identifying damages in buildings, assessing shelter needs, and finding appropriate places to establish emergency shelters or settlements require a wide range of data to be combined rapidly. To address this gap and make a headway in comprehensive assessments, this paper proposes a machine learning workflow that aims to fuse and rapidly analyse multimodal data. This workflow is built around open and online data to ensure scalability and broad accessibility. Based on a database of 19 characteristics for more than 200 disasters worldwide, a fusion approach at the decision level was used. This technique allows the collected multimodal data to share a common semantic space that facilitates the prediction of individual variables. Each fused numerical vector was fed into an unsupervised clustering algorithm called Self-Organizing-Maps (SOM). The trained SOM serves as a predictor for future cases, allowing predicting consequences such as total deaths, total people affected, and total damage, and provides specific recommendations for assessments in the shelter and housing sector. To achieve such prediction, a satellite image from before the disaster and the geographic and demographic conditions are shown to the trained model, which achieved a prediction accuracy of 62 %

  Access Paper or Ask Questions

Wide and Deep Graph Neural Network with Distributed Online Learning

Jul 19, 2021
Zhan Gao, Fernando Gama, Alejandro Ribeiro

Graph neural networks (GNNs) are naturally distributed architectures for learning representations from network data. This renders them suitable candidates for decentralized tasks. In these scenarios, the underlying graph often changes with time due to link failures or topology variations, creating a mismatch between the graphs on which GNNs were trained and the ones on which they are tested. Online learning can be leveraged to retrain GNNs at testing time to overcome this issue. However, most online algorithms are centralized and usually offer guarantees only on convex problems, which GNNs rarely lead to. This paper develops the Wide and Deep GNN (WD-GNN), a novel architecture that can be updated with distributed online learning mechanisms. The WD-GNN consists of two components: the wide part is a linear graph filter and the deep part is a nonlinear GNN. At training time, the joint wide and deep architecture learns nonlinear representations from data. At testing time, the wide, linear part is retrained, while the deep, nonlinear one remains fixed. This often leads to a convex formulation. We further propose a distributed online learning algorithm that can be implemented in a decentralized setting. We also show the stability of the WD-GNN to changes of the underlying graph and analyze the convergence of the proposed online learning procedure. Experiments on movie recommendation, source localization and robot swarm control corroborate theoretical findings and show the potential of the WD-GNN for distributed online learning.

* arXiv admin note: text overlap with arXiv:2006.06376 

  Access Paper or Ask Questions

Unreasonable Effectiveness of Rule-Based Heuristics in Solving Russian SuperGLUE Tasks

May 03, 2021
Tatyana Iazykova, Denis Kapelyushnik, Olga Bystrova, Andrey Kutuzov

Leader-boards like SuperGLUE are seen as important incentives for active development of NLP, since they provide standard benchmarks for fair comparison of modern language models. They have driven the world's best engineering teams as well as their resources to collaborate and solve a set of tasks for general language understanding. Their performance scores are often claimed to be close to or even higher than the human performance. These results encouraged more thorough analysis of whether the benchmark datasets featured any statistical cues that machine learning based language models can exploit. For English datasets, it was shown that they often contain annotation artifacts. This allows solving certain tasks with very simple rules and achieving competitive rankings. In this paper, a similar analysis was done for the Russian SuperGLUE (RSG), a recently published benchmark set and leader-board for Russian natural language understanding. We show that its test datasets are vulnerable to shallow heuristics. Often approaches based on simple rules outperform or come close to the results of the notorious pre-trained language models like GPT-3 or BERT. It is likely (as the simplest explanation) that a significant part of the SOTA models performance in the RSG leader-board is due to exploiting these shallow heuristics and that has nothing in common with real language understanding. We provide a set of recommendations on how to improve these datasets, making the RSG leader-board even more representative of the real progress in Russian NLU.

* Accepted to Dialogue'2021 

  Access Paper or Ask Questions

Probing Product Description Generation via Posterior Distillation

Mar 02, 2021
Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen, Zhuoye Ding, Yongjun Bao, Weipeng Yan, Yanyan Lan

In product description generation (PDG), the user-cared aspect is critical for the recommendation system, which can not only improve user's experiences but also obtain more clicks. High-quality customer reviews can be considered as an ideal source to mine user-cared aspects. However, in reality, a large number of new products (known as long-tailed commodities) cannot gather sufficient amount of customer reviews, which brings a big challenge in the product description generation task. Existing works tend to generate the product description solely based on item information, i.e., product attributes or title words, which leads to tedious contents and cannot attract customers effectively. To tackle this problem, we propose an adaptive posterior network based on Transformer architecture that can utilize user-cared information from customer reviews. Specifically, we first extend the self-attentive Transformer encoder to encode product titles and attributes. Then, we apply an adaptive posterior distillation module to utilize useful review information, which integrates user-cared aspects to the generation process. Finally, we apply a Transformer-based decoding phase with copy mechanism to automatically generate the product description. Besides, we also collect a large-scare Chinese product description dataset to support our work and further research in this field. Experimental results show that our model is superior to traditional generative models in both automatic indicators and human evaluation.

  Access Paper or Ask Questions

Assured Autonomy: Path Toward Living With Autonomous Systems We Can Trust

Oct 27, 2020
Ufuk Topcu, Nadya Bliss, Nancy Cooke, Missy Cummings, Ashley Llorens, Howard Shrobe, Lenore Zuck

The challenge of establishing assurance in autonomy is rapidly attracting increasing interest in the industry, government, and academia. Autonomy is a broad and expansive capability that enables systems to behave without direct control by a human operator. To that end, it is expected to be present in a wide variety of systems and applications. A vast range of industrial sectors, including (but by no means limited to) defense, mobility, health care, manufacturing, and civilian infrastructure, are embracing the opportunities in autonomy yet face the similar barriers toward establishing the necessary level of assurance sooner or later. Numerous government agencies are poised to tackle the challenges in assured autonomy. Given the already immense interest and investment in autonomy, a series of workshops on Assured Autonomy was convened to facilitate dialogs and increase awareness among the stakeholders in the academia, industry, and government. This series of three workshops aimed to help create a unified understanding of the goals for assured autonomy, the research trends and needs, and a strategy that will facilitate sustained progress in autonomy. The first workshop, held in October 2019, focused on current and anticipated challenges and problems in assuring autonomous systems within and across applications and sectors. The second workshop held in February 2020, focused on existing capabilities, current research, and research trends that could address the challenges and problems identified in workshop. The third event was dedicated to a discussion of a draft of the major findings from the previous two workshops and the recommendations.

* A Computing Community Consortium (CCC) workshop report, 28 pages 

  Access Paper or Ask Questions

Learning from Comparisons and Choices

Apr 24, 2017
Sahand Negahban, Sewoong Oh, Kiran K. Thekumparampil, Jiaming Xu

When tracking user-specific online activities, each user's preference is revealed in the form of choices and comparisons. For example, a user's purchase history tracks her choices, i.e. which item was chosen among a subset of offerings. A user's comparisons are observed either explicitly as in movie ratings or implicitly as in viewing times of news articles. Given such individualized ordinal data, we address the problem of collaboratively learning representations of the users and the items. The learned features can be used to predict a user's preference of an unseen item to be used in recommendation systems. This also allows one to compute similarities among users and items to be used for categorization and search. Motivated by the empirical successes of the MultiNomial Logit (MNL) model in marketing and transportation, and also more recent successes in word embedding and crowdsourced image embedding, we pose this problem as learning the MNL model parameters that best explains the data. We propose a convex optimization for learning the MNL model, and show that it is minimax optimal up to a logarithmic factor by comparing its performance to a fundamental lower bound. This characterizes the minimax sample complexity of the problem, and proves that the proposed estimator cannot be improved upon other than by a logarithmic factor. Further, the analysis identifies how the accuracy depends on the topology of sampling via the spectrum of the sampling graph. This provides a guideline for designing surveys when one can choose which items are to be compared. This is accompanies by numerical simulations on synthetic and real datasets confirming our theoretical predictions.

* 64 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1506.07947 

  Access Paper or Ask Questions

Next Generation Robotics

Jun 29, 2016
Henrik I Christensen, Allison Okamura, Maja Mataric, Vijay Kumar, Greg Hager, Howie Choset

The National Robotics Initiative (NRI) was launched 2011 and is about to celebrate its 5 year anniversary. In parallel with the NRI, the robotics community, with support from the Computing Community Consortium, engaged in a series of road mapping exercises. The first version of the roadmap appeared in September 2009; a second updated version appeared in 2013. While not directly aligned with the NRI, these road-mapping documents have provided both a useful charting of the robotics research space, as well as a metric by which to measure progress. This report sets forth a perspective of progress in robotics over the past five years, and provides a set of recommendations for the future. The NRI has in its formulation a strong emphasis on co-robot, i.e., robots that work directly with people. An obvious question is if this should continue to be the focus going forward? To try to assess what are the main trends, what has happened the last 5 years and what may be promising directions for the future a small CCC sponsored study was launched to have two workshops, one in Washington DC (March 5th, 2016) and another in San Francisco, CA (March 11th, 2016). In this report we brief summarize some of the main discussions and observations from those workshops. We will present a variety of background information in Section 2, and outline various issues related to progress over the last 5 years in Section 3. In Section 4 we will outline a number of opportunities for moving forward. Finally, we will summarize the main points in Section 5.

* A Computing Community Consortium (CCC) white paper, 22 pages 

  Access Paper or Ask Questions

Collaborative Filtering for Predicting User Preferences for Organizing Objects

Dec 20, 2015
Nichola Abdo, Cyrill Stachniss, Luciano Spinello, Wolfram Burgard

As service robots become more and more capable of performing useful tasks for us, there is a growing need to teach robots how we expect them to carry out these tasks. However, different users typically have their own preferences, for example with respect to arranging objects on different shelves. As many of these preferences depend on a variety of factors including personal taste, cultural background, or common sense, it is challenging for an expert to pre-program a robot in order to accommodate all potential users. At the same time, it is impractical for robots to constantly query users about how they should perform individual tasks. In this work, we present an approach to learn patterns in user preferences for the task of tidying up objects in containers, e.g., shelves or boxes. Our method builds upon the paradigm of collaborative filtering for making personalized recommendations and relies on data from different users that we gather using crowdsourcing. To deal with novel objects for which we have no data, we propose a method that compliments standard collaborative filtering by leveraging information mined from the Web. When solving a tidy-up task, we first predict pairwise object preferences of the user. Then, we subdivide the objects in containers by modeling a spectral clustering problem. Our solution is easy to update, does not require complex modeling, and improves with the amount of user data. We evaluate our approach using crowdsourcing data from over 1,200 users and demonstrate its effectiveness for two tidy-up scenarios. Additionally, we show that a real robot can reliably predict user preferences using our approach.

* Submission to The International Journal of Robotics Research. Relevant material can be found at 

  Access Paper or Ask Questions

PG$^2$Net: Personalized and Group Preferences Guided Network for Next Place Prediction

Oct 15, 2021
Huifeng Li, Bin Wang, Fan Xia, Xi Zhai, Sulei Zhu, Yanyan Xu

Predicting the next place to visit is a key in human mobility behavior modeling, which plays a significant role in various fields, such as epidemic control, urban planning, traffic management, and travel recommendation. To achieve this, one typical solution is designing modules based on RNN to capture their preferences to various locations. Although these RNN-based methods can effectively learn individual's hidden personalized preferences to her visited places, the interactions among users can only be weakly learned through the representations of locations. Targeting this, we propose an end-to-end framework named personalized and group preference guided network (PG$^2$Net), considering the users' preferences to various places at both individual and collective levels. Specifically, PG$^2$Net concatenates Bi-LSTM and attention mechanism to capture each user's long-term mobility tendency. To learn population's group preferences, we utilize spatial and temporal information of the visitations to construct a spatio-temporal dependency module. We adopt a graph embedding method to map users' trajectory into a hidden space, capturing their sequential relation. In addition, we devise an auxiliary loss to learn the vectorial representation of her next location. Experiment results on two Foursquare check-in datasets and one mobile phone dataset indicate the advantages of our model compared to the state-of-the-art baselines. Source codes are available at

  Access Paper or Ask Questions

An Exploration of Exploration: Measuring the ability of lexicase selection to find obscure pathways to optimality

Jul 26, 2021
Jose Guadalupe Hernandez, Alexander Lalejini, Charles Ofria

Parent selection algorithms (selection schemes) steer populations through a problem's search space, often trading off between exploitation and exploration. Understanding how selection schemes affect exploitation and exploration within a search space is crucial to tackling increasingly challenging problems. Here, we introduce an "exploration diagnostic" that diagnoses a selection scheme's capacity for search space exploration. We use our exploration diagnostic to investigate the exploratory capacity of lexicase selection and several of its variants: epsilon lexicase, down-sampled lexicase, cohort lexicase, and novelty-lexicase. We verify that lexicase selection out-explores tournament selection, and we show that lexicase selection's exploratory capacity can be sensitive to the ratio between population size and the number of test cases used for evaluating candidate solutions. Additionally, we find that relaxing lexicase's elitism with epsilon lexicase can further improve exploration. Both down-sampling and cohort lexicase -- two techniques for applying random subsampling to test cases -- degrade lexicase's exploratory capacity; however, we find that cohort partitioning better preserves lexicase's exploratory capacity than down-sampling. Finally, we find evidence that novelty-lexicase's addition of novelty test cases can degrade lexicase's capacity for exploration. Overall, our findings provide hypotheses for further exploration and actionable insights and recommendations for using lexicase selection. Additionally, this work demonstrates the value of selection scheme diagnostics as a complement to more conventional benchmarking approaches to selection scheme analysis.

* Changes to the axis labels and added funding sources to acknowledgments 

  Access Paper or Ask Questions