Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Unstructured Semantic Model supported Deep Neural Network for Click-Through Rate Prediction

Dec 04, 2018
Chenglei Niu, Guojing Zhong, Ying Liu, Yandong Zhang, Yongsheng Sun, Ailong He, Zhaoji Chen

With the rapid development of online advertising and recommendation systems, click-through rate prediction is expected to play an increasingly important role.Recently many DNN-based models which follow a similar Embedding&MLP paradigm have been proposed, and have achieved good result in image/voice and nlp fields.In these methods the Wide&Deep model announced by Google plays a key role.Most models first map large scale sparse input features into low-dimensional vectors which are transformed to fixed-length vectors, then concatenated together before being fed into a multilayer perceptron (MLP) to learn non-linear relations among input features. The number of trainable variables normally grow dramatically the number of feature fields and the embedding dimension grow. It is a big challenge to get state-of-the-art result through training deep neural network and embedding together, which falls into local optimal or overfitting easily.In this paper, we propose an Unstructured Semantic Model (USM) to tackles this challenge by designing a orthogonal base convolution and pooling model which adaptively learn the multi-scale base semantic representation between features supervised by the click label.The output of USM are then used in the Wide&Deep for CTR prediction.Experiments on two public datasets as well as real Weibo production dataset with over 1 billion samples have demonstrated the effectiveness of our proposed approach with superior performance comparing to state-of-the-art methods.


  Access Paper or Ask Questions

SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction

Dec 03, 2017
Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, Qi Liu

In online social networks people often express attitudes towards others, which forms massive sentiment links among users. Predicting the sign of sentiment links is a fundamental task in many areas such as personal advertising and public opinion analysis. Previous works mainly focus on textual sentiment classification, however, text information can only disclose the "tip of the iceberg" about users' true opinions, of which the most are unobserved but implied by other sources of information such as social relation and users' profile. To address this problem, in this paper we investigate how to predict possibly existing sentiment links in the presence of heterogeneous information. First, due to the lack of explicit sentiment links in mainstream social networks, we establish a labeled heterogeneous sentiment dataset which consists of users' sentiment relation, social relation and profile knowledge by entity-level sentiment extraction method. Then we propose a novel and flexible end-to-end Signed Heterogeneous Information Network Embedding (SHINE) framework to extract users' latent representations from heterogeneous networks and predict the sign of unobserved sentiment links. SHINE utilizes multiple deep autoencoders to map each user into a low-dimension feature space while preserving the network structure. We demonstrate the superiority of SHINE over state-of-the-art baselines on link prediction and node recommendation in two real-world datasets. The experimental results also prove the efficacy of SHINE in cold start scenario.

* The 11th ACM International Conference on Web Search and Data Mining (WSDM 2018) 

  Access Paper or Ask Questions

PRIIME: A Generic Framework for Interactive Personalized Interesting Pattern Discovery

Jul 19, 2016
Mansurul Bhuiyan, Mohammad Al Hasan

The traditional frequent pattern mining algorithms generate an exponentially large number of patterns of which a substantial proportion are not much significant for many data analysis endeavors. Discovery of a small number of personalized interesting patterns from the large output set according to a particular user's interest is an important as well as challenging task. Existing works on pattern summarization do not solve this problem from the personalization viewpoint. In this work, we propose an interactive pattern discovery framework named PRIIME which identifies a set of interesting patterns for a specific user without requiring any prior input on the interestingness measure of patterns from the user. The proposed framework is generic to support discovery of the interesting set, sequence and graph type patterns. We develop a softmax classification based iterative learning algorithm that uses a limited number of interactive feedback from the user to learn her interestingness profile, and use this profile for pattern recommendation. To handle sequence and graph type patterns PRIIME adopts a neural net (NN) based unsupervised feature construction approach. We also develop a strategy that combines exploration and exploitation to select patterns for feedback. We show experimental results on several real-life datasets to validate the performance of the proposed method. We also compare with the existing methods of interactive pattern discovery to show that our method is substantially superior in performance. To portray the applicability of the framework, we present a case study from the real-estate domain.


  Access Paper or Ask Questions

Interpretable Vertebral Fracture Quantification via Anchor-Free Landmarks Localization

Apr 14, 2022
Alexey Zakharov, Maxim Pisov, Alim Bukharaev, Alexey Petraikin, Sergey Morozov, Victor Gombolevskiy, Mikhail Belyaev

Vertebral body compression fractures are early signs of osteoporosis. Though these fractures are visible on Computed Tomography (CT) images, they are frequently missed by radiologists in clinical settings. Prior research on automatic methods of vertebral fracture classification proves its reliable quality; however, existing methods provide hard-to-interpret outputs and sometimes fail to process cases with severe abnormalities such as highly pathological vertebrae or scoliosis. We propose a new two-step algorithm to localize the vertebral column in 3D CT images and then detect individual vertebrae and quantify fractures in 2D simultaneously. We train neural networks for both steps using a simple 6-keypoints based annotation scheme, which corresponds precisely to the current clinical recommendation. Our algorithm has no exclusion criteria, processes 3D CT in 2 seconds on a single GPU, and provides an interpretable and verifiable output. The method approaches expert-level performance and demonstrates state-of-the-art results in vertebrae 3D localization (the average error is 1 mm), vertebrae 2D detection (precision and recall are 0.99), and fracture identification (ROC AUC at the patient level is up to 0.96). Our anchor-free vertebra detection network shows excellent generalizability on a new domain by achieving ROC AUC 0.95, sensitivity 0.85, specificity 0.9 on a challenging VerSe dataset with many unseen vertebra types.

* arXiv admin note: text overlap with arXiv:2005.11960 

  Access Paper or Ask Questions

Improved Topic modeling in Twitter through Community Pooling

Dec 20, 2021
Federico Albanese, Esteban Feuerstein

Social networks play a fundamental role in propagation of information and news. Characterizing the content of the messages becomes vital for different tasks, like breaking news detection, personalized message recommendation, fake users detection, information flow characterization and others. However, Twitter posts are short and often less coherent than other text documents, which makes it challenging to apply text mining algorithms to these datasets efficiently. Tweet-pooling (aggregating tweets into longer documents) has been shown to improve automatic topic decomposition, but the performance achieved in this task varies depending on the pooling method. In this paper, we propose a new pooling scheme for topic modeling in Twitter, which groups tweets whose authors belong to the same community (group of users who mainly interact with each other but not with other groups) on a user interaction graph. We present a complete evaluation of this methodology, state of the art schemes and previous pooling models in terms of the cluster quality, document retrieval tasks performance and supervised machine learning classification score. Results show that our Community polling method outperformed other methods on the majority of metrics in two heterogeneous datasets, while also reducing the running time. This is useful when dealing with big amounts of noisy and short user-generated social media texts. Overall, our findings contribute to an improved methodology for identifying the latent topics in a Twitter dataset, without the need of modifying the basic machinery of a topic decomposition model.


  Access Paper or Ask Questions

A Stochastic Alternating Balance $k$-Means Algorithm for Fair Clustering

May 29, 2021
Suyun Liu, Luis Nunes Vicente

In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfairness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups across the clusters, leading to a bi-objective optimization problem that is nonconvex and nonsmooth. To determine the complete trade-off between these two competing goals, we design a novel stochastic alternating balance fair $k$-means (SAfairKM) algorithm, which consists of alternating classical mini-batch $k$-means updates and group swap updates. The number of $k$-means updates and the number of swap updates essentially parameterize the weight put on optimizing each objective function. Our numerical experiments show that the proposed SAfairKM algorithm is robust and computationally efficient in constructing well-spread and high-quality Pareto fronts both on synthetic and real datasets. Moreover, we propose a novel companion algorithm, the stochastic alternating bi-objective gradient descent (SA2GD) algorithm, which can handle a smooth version of the considered bi-objective fair $k$-means problem, more amenable for analysis. A sublinear convergence rate of $\mathcal{O}(1/T)$ is established under strong convexity for the determination of a stationary point of a weighted sum of the two functions parameterized by the number of steps or updates on each function.


  Access Paper or Ask Questions

Social Link Inference via Multi-View Matching Network from Spatio-Temporal Trajectories

Mar 20, 2021
Wei Zhang, Xin Lai, Jianyong Wang

In this paper, we investigate the problem of social link inference in a target Location-aware Social Network (LSN), which aims at predicting the unobserved links between users within the network. This problem is critical for downstream applications including network completion and friend recommendation. In addition to the network structures commonly used in general link prediction, the studies tailored for social link inference in an LSN leverage user trajectories from the spatial aspect. However, the temporal factor lying in user trajectories is largely overlooked by most of the prior studies, limiting the capabilities of capturing the temporal relevance between users. Moreover, effective user matching by fusing different views, i.e., social, spatial, and temporal factors, remains unresolved, which hinders the potential improvement of link inference. To this end, this paper devises a novel multi-view matching network (MVMN) by regarding each of the three factors as one view of any target user pair. MVMN enjoys the flexibility and completeness of modeling each factor by developing its suitable matching module: 1) location matching module, 2) time-series matching module, and 3) relation matching module. Each module learns a view-specific representation for matching, and MVMN fuses them for final link inference. Extensive experiments on two real-world datasets demonstrate the superiority of our approach against several competitive baselines for link prediction and sequence matching, validating the contribution of its key components.

* 12 pages, Published in IEEE TNNLS (Key source code added) 

  Access Paper or Ask Questions

COVID-19 Knowledge Graph: Accelerating Information Retrieval and Discovery for Scientific Literature

Jul 24, 2020
Colby Wise, Vassilis N. Ioannidis, Miguel Romero Calvo, Xiang Song, George Price, Ninad Kulkarni, Ryan Brand, Parminder Bhatia, George Karypis

The coronavirus disease (COVID-19) has claimed the lives of over 350,000 people and infected more than 6 million people worldwide. Several search engines have surfaced to provide researchers with additional tools to find and retrieve information from the rapidly growing corpora on COVID-19. These engines lack extraction and visualization tools necessary to retrieve and interpret complex relations inherent to scientific literature. Moreover, because these engines mainly rely upon semantic information, their ability to capture complex global relationships across documents is limited, which reduces the quality of similarity-based article recommendations for users. In this work, we present the COVID-19 Knowledge Graph (CKG), a heterogeneous graph for extracting and visualizing complex relationships between COVID-19 scientific articles. The CKG combines semantic information with document topological information for the application of similar document retrieval. The CKG is constructed using the latent schema of the data, and then enriched with biomedical entity information extracted from the unstructured text of articles using scalable AWS technologies to form relations in the graph. Finally, we propose a document similarity engine that leverages low-dimensional graph embeddings from the CKG with semantic embeddings for similar article retrieval. Analysis demonstrates the quality of relationships in the CKG and shows that it can be used to uncover meaningful information in COVID-19 scientific articles. The CKG helps power www.cord19.aws and is publicly available.


  Access Paper or Ask Questions

Calendar Graph Neural Networks for Modeling Time Structures in Spatiotemporal User Behaviors

Jun 11, 2020
Daheng Wang, Meng Jiang, Munira Syed, Oliver Conway, Vishal Juneja, Sriram Subramanian, Nitesh V. Chawla

User behavior modeling is important for industrial applications such as demographic attribute prediction, content recommendation, and target advertising. Existing methods represent behavior log as a sequence of adopted items and find sequential patterns; however, concrete location and time information in the behavior log, reflecting dynamic and periodic patterns, joint with the spatial dimension, can be useful for modeling users and predicting their characteristics. In this work, we propose a novel model based on graph neural networks for learning user representations from spatiotemporal behavior data. A behavior log comprises a sequence of sessions; and a session has a location, start time, end time, and a sequence of adopted items. Our model's architecture incorporates two networked structures. One is a tripartite network of items, sessions, and locations. The other is a hierarchical calendar network of hour, week, and weekday nodes. It first aggregates embeddings of location and items into session embeddings via the tripartite network, and then generates user embeddings from the session embeddings via the calendar structure. The user embeddings preserve spatial patterns and temporal patterns of a variety of periodicity (e.g., hourly, weekly, and weekday patterns). It adopts the attention mechanism to model complex interactions among the multiple patterns in user behaviors. Experiments on real datasets (i.e., clicks on news articles in a mobile app) show our approach outperforms strong baselines for predicting missing demographic attributes.


  Access Paper or Ask Questions

PaDGAN: A Generative Adversarial Network for Performance Augmented Diverse Designs

Feb 26, 2020
Wei Chen, Faez Ahmed

Deep generative models are proven to be a useful tool for automatic design synthesis and design space exploration. When applied in engineering design, existing generative models face two challenges: 1) generated designs lack diversity and do not cover all areas of the design space and 2) it is difficult to explicitly improve the overall performance or quality of generated designs without excluding low-quality designs from the dataset, which may impair the performance of the trained model due to reduced training sample size. In this paper, we simultaneously address these challenges by proposing a new Determinantal Point Processes based loss function for probabilistic modeling of diversity and quality. With this new loss function, we develop a variant of the Generative Adversarial Network, named "Performance Augmented Diverse Generative Adversarial Network" or PaDGAN, which can generate novel high-quality designs with good coverage of the design space. We demonstrate that PaDGAN can generate diverse and high-quality designs on both synthetic and real-world examples and compare PaDGAN against other models such as the vanilla GAN and the BezierGAN. Unlike typical generative models that usually generate new designs by interpolating within the boundary of training data, we show that PaDGAN expands the design space boundary towards high-quality regions. The proposed method is broadly applicable to many tasks including design space exploration, design optimization, and creative solution recommendation.


  Access Paper or Ask Questions

<<
400
401
402
403
404
405
406
407
408
409
410
411
412
>>