Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments

Jun 06, 2019
Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis

We consider the estimation of heterogeneous treatment effects with arbitrary machine learning methods in the presence of unobserved confounders with the aid of a valid instrument. Such settings arise in A/B tests with an intent-to-treat structure, where the experimenter randomizes over which user will receive a recommendation to take an action, and we are interested in the effect of the downstream action. We develop a statistical learning approach to the estimation of heterogeneous effects, reducing the problem to the minimization of an appropriate loss function that depends on a set of auxiliary models (each corresponding to a separate prediction task). The reduction enables the use of all recent algorithmic advances (e.g. neural nets, forests). We show that the estimated effect model is robust to estimation errors in the auxiliary models, by showing that the loss satisfies a Neyman orthogonality criterion. Our approach can be used to estimate projections of the true effect model on simpler hypothesis spaces. When these spaces are parametric, then the parameter estimates are asymptotically normal, which enables construction of confidence sets. We applied our method to estimate the effect of membership on downstream webpage engagement on TripAdvisor, using as an instrument an intent-to-treat A/B test among 4 million TripAdvisor users, where some users received an easier membership sign-up process. We also validate our method on synthetic data and on public datasets for the effects of schooling on income.


  Access Paper or Ask Questions

Calibrated Prediction Intervals for Neural Network Regressors

Oct 26, 2018
Gil Keren, Nicholas Cummins, Björn Schuller

Ongoing developments in neural network models are continually advancing the state of the art in terms of system accuracy. However, the predicted labels should not be regarded as the only core output; also important is a well-calibrated estimate of the prediction uncertainty. Such estimates and their calibration are critical in many practical applications. Despite their obvious aforementioned advantage in relation to accuracy, contemporary neural networks can, generally, be regarded as poorly calibrated and as such do not produce reliable output probability estimates. Further, while post-processing calibration solutions can be found in the relevant literature, these tend to be for systems performing classification. In this regard, we herein present two novel methods for acquiring calibrated predictions intervals for neural network regressors: empirical calibration and temperature scaling. In experiments using different regression tasks from the audio and computer vision domains, we find that both our proposed methods are indeed capable of producing calibrated prediction intervals for neural network regressors with any desired confidence level, a finding that is consistent across all datasets and neural network architectures we experimented with. In addition, we derive an additional practical recommendation for producing more accurate calibrated prediction intervals. We release the source code implementing our proposed methods for computing calibrated predicted intervals. The code for computing calibrated predicted intervals is publicly available.

* IEEE Access (Volume 6), 2018 

  Access Paper or Ask Questions

Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph Attention

May 02, 2022
Wei Shao, Zhiling Jin, Shuo Wang, Yufan Kang, Xiao Xiao, Hamid Menouar, Zhaofeng Zhang, Junshan Zhang, Flora Salim

Many real-world ubiquitous applications, such as parking recommendations and air pollution monitoring, benefit significantly from accurate long-term spatio-temporal forecasting (LSTF). LSTF makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data. Recent studies have revealed the potential of multi-graph neural networks (MGNNs) to improve prediction performance. However, existing MGNN methods cannot be directly applied to LSTF due to several issues: the low level of generality, insufficient use of contextual information, and the imbalanced graph fusion approach. To address these issues, we construct new graph models to represent the contextual information of each node and the long-term spatio-temporal data dependency structure. To fuse the information across multiple graphs, we propose a new dynamic multi-graph fusion module to characterize the correlations of nodes within a graph and the nodes across graphs via the spatial attention and graph attention mechanisms. Furthermore, we introduce a trainable weight tensor to indicate the importance of each node in different graphs. Extensive experiments on two large-scale datasets demonstrate that our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.

* Accepted by the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022) 

  Access Paper or Ask Questions

Understanding User Satisfaction with Task-oriented Dialogue Systems

Apr 26, 2022
Clemencia Siro, Mohammad Aliannejadi, Maarten de Rijke

$ $Dialogue systems are evaluated depending on their type and purpose. Two categories are often distinguished: (1) task-oriented dialogue systems (TDS), which are typically evaluated on utility, i.e., their ability to complete a specified task, and (2) open domain chatbots, which are evaluated on the user experience, i.e., based on their ability to engage a person. What is the influence of user experience on the user satisfaction rating of TDS as opposed to, or in addition to, utility? We collect data by providing an additional annotation layer for dialogues sampled from the ReDial dataset, a widely used conversational recommendation dataset. Unlike prior work, we annotate the sampled dialogues at both the turn and dialogue level on six dialogue aspects: relevance, interestingness, understanding, task completion, efficiency, and interest arousal. The annotations allow us to study how different dialogue aspects influence user satisfaction. We introduce a comprehensive set of user experience aspects derived from the annotators' open comments that can influence users' overall impression. We find that the concept of satisfaction varies across annotators and dialogues, and show that a relevant turn is significant for some annotators, while for others, an interesting turn is all they need. Our analysis indicates that the proposed user experience aspects provide a fine-grained analysis of user satisfaction that is not captured by a monolithic overall human rating.

* To appear in SIGIR 2022 short paper track 

  Access Paper or Ask Questions

Not always about you: Prioritizing community needs when developing endangered language technology

Apr 12, 2022
Zoey Liu, Crystal Richardson, Richard Hatcher Jr, Emily Prud'hommeaux

Languages are classified as low-resource when they lack the quantity of data necessary for training statistical and machine learning tools and models. Causes of resource scarcity vary but can include poor access to technology for developing these resources, a relatively small population of speakers, or a lack of urgency for collecting such resources in bilingual populations where the second language is high-resource. As a result, the languages described as low-resource in the literature are as different as Finnish on the one hand, with millions of speakers using it in every imaginable domain, and Seneca, with only a small-handful of fluent speakers using the language primarily in a restricted domain. While issues stemming from the lack of resources necessary to train models unite this disparate group of languages, many other issues cut across the divide between widely-spoken low resource languages and endangered languages. In this position paper, we discuss the unique technological, cultural, practical, and ethical challenges that researchers and indigenous speech community members face when working together to develop language technology to support endangered language documentation and revitalization. We report the perspectives of language teachers, Master Speakers and elders from indigenous communities, as well as the point of view of academics. We describe an ongoing fruitful collaboration and make recommendations for future partnerships between academic researchers and language community stakeholders.

* To appear in ACL 2022 

  Access Paper or Ask Questions

Estimating average causal effects from patient trajectories

Mar 02, 2022
Dennis Frauen, Tobias Hatt, Valentyn Melnychuk, Stefan Feuerriegel

In medical practice, treatments are selected based on the expected causal effects on patient outcomes. Here, the gold standard for estimating causal effects are randomized controlled trials; however, such trials are costly and sometimes even unethical. Instead, medical practice is increasingly interested in estimating causal effects among patient subgroups from electronic health records, that is, observational data. In this paper, we aim at estimating the average causal effect (ACE) from observational data (patient trajectories) that are collected over time. For this, we propose DeepACE: an end-to-end deep learning model. DeepACE leverages the iterative G-computation formula to adjust for the bias induced by time-varying confounders. Moreover, we develop a novel sequential targeting procedure which ensures that DeepACE has favorable theoretical properties, i.e., is doubly robust and asymptotically efficient. To the best of our knowledge, this is the first work that proposes an end-to-end deep learning model for estimating time-varying ACEs. We compare DeepACE in an extensive number of experiments, confirming that it achieves state-of-the-art performance. We further provide a case study for patients suffering from low back pain to demonstrate that DeepACE generates important and meaningful findings for clinical practice. Our work enables medical practitioners to develop effective treatment recommendations tailored to patient subgroups.


  Access Paper or Ask Questions

A Benchmark for Low-Switching-Cost Reinforcement Learning

Dec 13, 2021
Shusheng Xu, Yancheng Liang, Yunfei Li, Simon Shaolei Du, Yi Wu

A ubiquitous requirement in many practical reinforcement learning (RL) applications, including medical treatment, recommendation system, education and robotics, is that the deployed policy that actually interacts with the environment cannot change frequently. Such an RL setting is called low-switching-cost RL, i.e., achieving the highest reward while reducing the number of policy switches during training. Despite the recent trend of theoretical studies aiming to design provably efficient RL algorithms with low switching costs, none of the existing approaches have been thoroughly evaluated in popular RL testbeds. In this paper, we systematically studied a wide collection of policy-switching approaches, including theoretically guided criteria, policy-difference-based methods, and non-adaptive baselines. Through extensive experiments on a medical treatment environment, the Atari games, and robotic control tasks, we present the first empirical benchmark for low-switching-cost RL and report novel findings on how to decrease the switching cost while maintain a similar sample efficiency to the case without the low-switching-cost constraint. We hope this benchmark could serve as a starting point for developing more practically effective low-switching-cost RL algorithms. We release our code and complete results in https://sites.google.com/view/low-switching-cost-rl.

* 17 pages, 5 fiugres, project website: https://sites.google.com/view/low-switching-cost-rl 

  Access Paper or Ask Questions

How Private Is Your RL Policy? An Inverse RL Based Analysis Framework

Dec 10, 2021
Kritika Prakash, Fiza Husain, Praveen Paruchuri, Sujit P. Gujar

Reinforcement Learning (RL) enables agents to learn how to perform various tasks from scratch. In domains like autonomous driving, recommendation systems, and more, optimal RL policies learned could cause a privacy breach if the policies memorize any part of the private reward. We study the set of existing differentially-private RL policies derived from various RL algorithms such as Value Iteration, Deep Q Networks, and Vanilla Proximal Policy Optimization. We propose a new Privacy-Aware Inverse RL (PRIL) analysis framework, that performs reward reconstruction as an adversarial attack on private policies that the agents may deploy. For this, we introduce the reward reconstruction attack, wherein we seek to reconstruct the original reward from a privacy-preserving policy using an Inverse RL algorithm. An adversary must do poorly at reconstructing the original reward function if the agent uses a tightly private policy. Using this framework, we empirically test the effectiveness of the privacy guarantee offered by the private algorithms on multiple instances of the FrozenLake domain of varying complexities. Based on the analysis performed, we infer a gap between the current standard of privacy offered and the standard of privacy needed to protect reward functions in RL. We do so by quantifying the extent to which each private policy protects the reward function by measuring distances between the original and reconstructed rewards.

* 15 pages, 7 figures, 5 tables, version accepted at AAAI 2022 

  Access Paper or Ask Questions

<<
388
389
390
391
392
393
394
395
396
397
398
399
400
>>