Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Impact Remediation: Optimal Interventions to Reduce Inequality

Jul 01, 2021
Lucius E. J. Bynum, Joshua R. Loftus, Julia Stoyanovich

A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences and humanistic studies brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a real-world case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.

  Access Paper or Ask Questions

Prototype-based Counterfactual Explanation for Causal Classification

May 06, 2021
Tri Dung Duong, Qian Li, Guandong Xu

Counterfactual explanation is one branch of interpretable machine learning that produces a perturbation sample to change the model's original decision. The generated samples can act as a recommendation for end-users to achieve their desired outputs. Most of the current counterfactual explanation approaches are the gradient-based method, which can only optimize the differentiable loss functions with continuous variables. Accordingly, the gradient-free methods are proposed to handle the categorical variables, which however present several major limitations: 1) causal relationships among features are typically ignored when generating the counterfactuals, possibly resulting in impractical guidelines for decision-makers; 2) the generation of the counterfactual sample is prohibitively slow and requires lots of parameter tuning for combining different loss functions. In this work, we propose a causal structure model to preserve the causal relationship underlying the features of the counterfactual. In addition, we design a novel gradient-free optimization based on the multi-objective genetic algorithm that generates the counterfactual explanations for the mixed-type of continuous and categorical data. Numerical experiments demonstrate that our method compares favorably with state-of-the-art methods and therefore is applicable to any prediction model. All the source code and data are available at \textit{\url{{}}}.

  Access Paper or Ask Questions

Learning to Actively Learn: A Robust Approach

Oct 29, 2020
Jifan Zhang, Kevin Jamieson

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

  Access Paper or Ask Questions

Simultaneous Preference and Metric Learning from Paired Comparisons

Sep 07, 2020
Austin Xu, Mark A. Davenport

A popular model of preference in the context of recommendation systems is the so-called \emph{ideal point} model. In this model, a user is represented as a vector $\mathbf{u}$ together with a collection of items $\mathbf{x_1}, \ldots, \mathbf{x_N}$ in a common low-dimensional space. The vector $\mathbf{u}$ represents the user's "ideal point," or the ideal combination of features that represents a hypothesized most preferred item. The underlying assumption in this model is that a smaller distance between $\mathbf{u}$ and an item $\mathbf{x_j}$ indicates a stronger preference for $\mathbf{x_j}$. In the vast majority of the existing work on learning ideal point models, the underlying distance has been assumed to be Euclidean. However, this eliminates any possibility of interactions between features and a user's underlying preferences. In this paper, we consider the problem of learning an ideal point representation of a user's preferences when the distance metric is an unknown Mahalanobis metric. Specifically, we present a novel approach to estimate the user's ideal point $\mathbf{u}$ and the Mahalanobis metric from paired comparisons of the form "item $\mathbf{x_i}$ is preferred to item $\mathbf{x_j}$." This can be viewed as a special case of a more general metric learning problem where the location of some points are unknown a priori. We conduct extensive experiments on synthetic and real-world datasets to exhibit the effectiveness of our algorithm.

* 16 pages, 10 figures 

  Access Paper or Ask Questions

Improving Query Safety at Pinterest

Jun 23, 2020
Abhijit Mahabal, Yinrui Li, Rajat Raina, Daniel Sun, Revati Mahajan, Jure Leskovec

Query recommendations in search engines is a double edged sword, with undeniable benefits but potential of harm. Identifying unsafe queries is necessary to protect users from inappropriate query suggestions. However, identifying these is non-trivial because of the linguistic diversity resulting from large vocabularies, social-group-specific slang and typos, and because the inappropriateness of a term depends on the context. Here we formulate the problem as query-set expansion, where we are given a small and potentially biased seed set and the aim is to identify a diverse set of semantically related queries. We present PinSets, a system for query-set expansion, which applies a simple yet powerful mechanism to search user sessions, expanding a tiny seed set into thousands of related queries at nearly perfect precision, deep into the tail, along with explanations that are easy to interpret. PinSets owes its high quality expansion to using a hybrid of textual and behavioral techniques (i.e., treating queries both as compositional and as black boxes). Experiments show that, for the domain of drugs-related queries, PinSets expands 20 seed queries into 15,670 positive training examples at over 99\% precision. The generated expansions have diverse vocabulary and correctly handles words with ambiguous safety. PinSets decreased unsafe query suggestions at Pinterest by 90\%.

  Access Paper or Ask Questions

General-Purpose User Embeddings based on Mobile App Usage

May 27, 2020
Junqi Zhang, Bing Bai, Ye Lin, Jian Liang, Kun Bai, Fei Wang

In this paper, we report our recent practice at Tencent for user modeling based on mobile app usage. User behaviors on mobile app usage, including retention, installation, and uninstallation, can be a good indicator for both long-term and short-term interests of users. For example, if a user installs Snapseed recently, she might have a growing interest in photographing. Such information is valuable for numerous downstream applications, including advertising, recommendations, etc. Traditionally, user modeling from mobile app usage heavily relies on handcrafted feature engineering, which requires onerous human work for different downstream applications, and could be sub-optimal without domain experts. However, automatic user modeling based on mobile app usage faces unique challenges, including (1) retention, installation, and uninstallation are heterogeneous but need to be modeled collectively, (2) user behaviors are distributed unevenly over time, and (3) many long-tailed apps suffer from serious sparsity. In this paper, we present a tailored AutoEncoder-coupled Transformer Network (AETN), by which we overcome these challenges and achieve the goals of reducing manual efforts and boosting performance. We have deployed the model at Tencent, and both online/offline experiments from multiple domains of downstream applications have demonstrated the effectiveness of the output user embeddings.

* To be published in the KDD2020 proceedings as a full paper 

  Access Paper or Ask Questions

Link Prediction via Graph Attention Network

Oct 14, 2019
Weiwei Gu, Fei Gao, Xiaodan Lou, Jiang Zhang

Link prediction aims to infer the missing links or predicting future ones based on the currently observed partial network. It is a fundamental problem in network science because not only the problem has wide range of applications such as social network recommendation and information retrieval, but also the linkages contain rich hidden information of node properties and network structures. However, conventional link prediction approaches neither have high prediction accuracy nor being capable of revealing the hidden information behind links. To address this problem, we generalize the latest techniques in deep learning on graphs and present a new link prediction model - DeepLinker by integrating the batched graph convolution techniques in GraphSAGE and the attention mechanism in graph attention network (GAT). Experiments on five graphs show that our model can not only achieve the state-of-the-art accuracy in link prediction, but also the efficient ranking and node representations as the byproducts of link prediction task. Although the low dimensional node representations are obtained without any node label information, they can perform very well on downstream tasks such as node ranking and classification. Therefore, we claim that the link prediction task on graphs is like the language model in natural language processing because it reveals the hidden information from the graph structure in an unsupervised way.

  Access Paper or Ask Questions

CodeGRU: Context-aware Deep Learning with Gated Recurrent Unit for Source Code Modeling

Mar 03, 2019
Yasir Hussain, Zhiqiu Huang, Senzhang Wang, Yu Zhou

Recently many NLP-based deep learning models have been applied to model source code for source code suggestion and recommendation tasks. A major limitation of these approaches is that they take source code as simple tokens of text and ignore its contextual, syntaxtual and structural dependencies. In this work, we present CodeGRU, a Gated Recurrent Unit based source code language model that is capable of capturing contextual, syntaxtual and structural dependencies for modeling the source code. The CodeGRU introduces the following several new components. The Code Sampler is first proposed for selecting noise-free code samples and transforms obfuscate code to its proper syntax, which helps to capture syntaxtual and structural dependencies. The Code Regularize is next introduced to encode source code which helps capture the contextual dependencies of the source code. Finally, we propose a novel method which can learn variable size context for modeling source code. We evaluated CodeGRU with real-world dataset and it shows that CodeGRU can effectively capture contextual, syntaxtual and structural dependencies which previous works fails. We also discuss and visualize two use cases of CodeGRU for source code modeling tasks (1) source code suggestion, and (2) source code generation.

  Access Paper or Ask Questions

Predicting Diabetes Disease Evolution Using Financial Records and Recurrent Neural Networks

Nov 23, 2018
Rafael T. Sousa, Lucas A. Pereira, Anderson S. Soares

Managing patients with chronic diseases is a major and growing healthcare challenge in several countries. A chronic condition, such as diabetes, is an illness that lasts a long time and does not go away, and often leads to the patient's health gradually getting worse. While recent works involve raw electronic health record (EHR) from hospitals, this work uses only financial records from health plan providers to predict diabetes disease evolution with a self-attentive recurrent neural network. The use of financial data is due to the possibility of being an interface to international standards, as the records standard encodes medical procedures. The main goal was to assess high risk diabetics, so we predict records related to diabetes acute complications such as amputations and debridements, revascularization and hemodialysis. Our work succeeds to anticipate complications between 60 to 240 days with an area under ROC curve ranging from 0.81 to 0.94. In this paper we describe the first half of a work-in-progress developed within a health plan provider with ROC curve ranging from 0.81 to 0.83. This assessment will give healthcare providers the chance to intervene earlier and head off hospitalizations. We are aiming to deliver personalized predictions and personalized recommendations to individual patients, with the goal of improving outcomes and reducing costs

* Machine Learning for Health (ML4H) Workshop at NeurIPS 2018 arXiv:1811.07216 

  Access Paper or Ask Questions