Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Link Stream Graph for Temporal Recommendations

Mar 27, 2019
Armel Jacques Nzekon Nzeko'o, Maurice Tchuente, Matthieu Latapy

Several researches on recommender systems are based on explicit rating data, but in many real world e-commerce platforms, ratings are not always available, and in those situations, recommender systems have to deal with implicit data such as users' purchase history, browsing history and streaming history. In this context, classical bipartite user-item graphs (BIP) are widely used to compute top-N recommendations. However, these graphs have some limitations, particularly in terms of taking temporal dynamic into account. This is not good because users' preference change over time. To overcome this limit, the Session-based Temporal Graph (STG) was proposed by Xiang et al. to combine long- and short-term preferences in a graph-based recommender system. But in the STG, time is divided into slices and therefore considered discontinuously. This approach loses details of the real temporal dynamics of user actions. To address this challenge, we propose the Link Stream Graph (LSG) which is an extension of link stream representation proposed by Latapy et al. and which allows to model interactions between users and items by considering time continuously. Experiments conducted on four real world implicit datasets for temporal recommendation, with 3 evaluation metrics, show that LSG is the best in 9 out of 12 cases compared to BIP and STG which are the most used state-of-the-art recommender graphs.

  Access Paper or Ask Questions

Batch versus Sequential Active Learning for Recommender Systems

Jan 19, 2022
Toon De Pessemier, Sander Vanhove, Luc Martens

Recommender systems have been investigated for many years, with the aim of generating the most accurate recommendations possible. However, available data about new users is often insufficient, leading to inaccurate recommendations; an issue that is known as the cold-start problem. A solution can be active learning. Active learning strategies proactively select items and ask users to rate these. This way, detailed user preferences can be acquired and as a result, more accurate recommendations can be offered to the user. In this study, we compare five active learning algorithms, combined with three different predictor algorithms, which are used to estimate to what extent the user would like the item that is asked to rate. In addition, two modes are tested for selecting the items: batch mode (all items at once), and sequential mode (the items one by one). Evaluation of the recommender in terms of rating prediction, decision support, and the ranking of items, showed that sequential mode produces the most accurate recommendations for dense data sets. Differences between the active learning algorithms are small. For most active learners, the best predictor turned out to be FunkSVD in combination with sequential mode.

* 11 pages, 12 figures, [email protected] RecSys 2021, 4th Workshop on Online Recommender Systems and User Modeling, in conjunction with the 15th ACM Conference on Recommender Systems 

  Access Paper or Ask Questions

Developing Multi-Task Recommendations with Long-Term Rewards via Policy Distilled Reinforcement Learning

Jan 27, 2020
Xi Liu, Li Li, Ping-Chun Hsieh, Muhe Xie, Yong Ge, Rui Chen

With the explosive growth of online products and content, recommendation techniques have been considered as an effective tool to overcome information overload, improve user experience, and boost business revenue. In recent years, we have observed a new desideratum of considering long-term rewards of multiple related recommendation tasks simultaneously. The consideration of long-term rewards is strongly tied to business revenue and growth. Learning multiple tasks simultaneously could generally improve the performance of individual task due to knowledge sharing in multi-task learning. While a few existing works have studied long-term rewards in recommendations, they mainly focus on a single recommendation task. In this paper, we propose {\it PoDiRe}: a \underline{po}licy \underline{di}stilled \underline{re}commender that can address long-term rewards of recommendations and simultaneously handle multiple recommendation tasks. This novel recommendation solution is based on a marriage of deep reinforcement learning and knowledge distillation techniques, which is able to establish knowledge sharing among different tasks and reduce the size of a learning model. The resulting model is expected to attain better performance and lower response latency for real-time recommendation services. In collaboration with Samsung Game Launcher, one of the world's largest commercial mobile game platforms, we conduct a comprehensive experimental study on large-scale real data with hundreds of millions of events and show that our solution outperforms many state-of-the-art methods in terms of several standard evaluation metrics.

  Access Paper or Ask Questions

Recommending Accurate and Diverse Items Using Bilateral Branch Network

Jan 04, 2021
Yile Liang, Tieyun Qian

Recommender systems have played a vital role in online platforms due to the ability of incorporating users' personal tastes. Beyond accuracy, diversity has been recognized as a key factor in recommendation to broaden user's horizons as well as to promote enterprises' sales. However, the trading-off between accuracy and diversity remains to be a big challenge, and the data and user biases have not been explored yet. In this paper, we develop an adaptive learning framework for accurate and diversified recommendation. We generalize recent proposed bi-lateral branch network in the computer vision community from image classification to item recommendation. Specifically, we encode domain level diversity by adaptively balancing accurate recommendation in the conventional branch and diversified recommendation in the adaptive branch of a bilateral branch network. We also capture user level diversity using a two-way adaptive metric learning backbone network in each branch. We conduct extensive experiments on three real-world datasets. Results demonstrate that our proposed approach consistently outperforms the state-of-the-art baselines.

* 12 pages, 7 figures 

  Access Paper or Ask Questions

FeedRec: News Feed Recommendation with Various User Feedbacks

Feb 09, 2021
Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang

Personalized news recommendation techniques are widely adopted by many online news feed platforms to target user interests. Learning accurate user interest models is important for news recommendation. Most existing methods for news recommendation rely on implicit feedbacks like click behaviors for inferring user interests and model training. However, click behaviors are implicit feedbacks and usually contain heavy noise. In addition, they cannot help infer complicated user interest such as dislike. Besides, the feed recommendation models trained solely on click behaviors cannot optimize other objectives such as user engagement. In this paper, we present a news feed recommendation method that can exploit various kinds of user feedbacks to enhance both user interest modeling and recommendation model training. In our method we propose a unified user modeling framework to incorporate various explicit and implicit user feedbacks to infer both positive and negative user interests. In addition, we propose a strong-to-weak attention network that uses the representations of stronger feedbacks to distill positive and negative user interests from implicit weak feedbacks for accurate user interest modeling. Besides, we propose a multi-feedback model training framework by jointly training the model in the click, finish and dwell time prediction tasks to learn an engagement-aware feed recommendation model. Extensive experiments on real-world dataset show that our approach can effectively improve the model performance in terms of both news clicks and user engagement.

  Access Paper or Ask Questions

Personalized Food Recommendation as Constrained Question Answering over a Large-scale Food Knowledge Graph

Jan 05, 2021
Yu Chen, Ananya Subburathinam, Ching-Hua Chen, Mohammed J. Zaki

Food recommendation has become an important means to help guide users to adopt healthy dietary habits. Previous works on food recommendation either i) fail to consider users' explicit requirements, ii) ignore crucial health factors (e.g., allergies and nutrition needs), or iii) do not utilize the rich food knowledge for recommending healthy recipes. To address these limitations, we propose a novel problem formulation for food recommendation, modeling this task as constrained question answering over a large-scale food knowledge base/graph (KBQA). Besides the requirements from the user query, personalized requirements from the user's dietary preferences and health guidelines are handled in a unified way as additional constraints to the QA system. To validate this idea, we create a QA style dataset for personalized food recommendation based on a large-scale food knowledge graph and health guidelines. Furthermore, we propose a KBQA-based personalized food recommendation framework which is equipped with novel techniques for handling negations and numerical comparisons in the queries. Experimental results on the benchmark show that our approach significantly outperforms non-personalized counterparts (average 59.7% absolute improvement across various evaluation metrics), and is able to recommend more relevant and healthier recipes.

* 9 pages. Accepted by WSDM 2021. Final version 

  Access Paper or Ask Questions

Shared MF: A privacy-preserving recommendation system

Aug 18, 2020
Senci Ying

Matrix factorization is one of the most commonly used technologies in recommendation system. With the promotion of recommendation system in e-commerce shopping, online video and other aspects, distributed recommendation system has been widely promoted, and the privacy problem of multi-source data becomes more and more important. Based on Federated learning technology, this paper proposes a shared matrix factorization scheme called SharedMF. Firstly, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data. Experimental results show that compared with the existing homomorphic encryption methods, our method can have faster execution speed without privacy disclosure, and can better adapt to recommendation scenarios with large amount of data.

  Access Paper or Ask Questions

Generating ordered list of Recommended Items: a Hybrid Recommender System of Microblog

Nov 27, 2015
Yingzhen Li, Ye Zhang

Precise recommendation of followers helps in improving the user experience and maintaining the prosperity of twitter and microblog platforms. In this paper, we design a hybrid recommender system of microblog as a solution of KDD Cup 2012, track 1 task, which requires predicting users a user might follow in Tencent Microblog. We describe the background of the problem and present the algorithm consisting of keyword analysis, user taxonomy, (potential)interests extraction and item recommendation. Experimental result shows the high performance of our algorithm. Some possible improvements are discussed, which leads to further study.

* 7 pages 

  Access Paper or Ask Questions

Revisiting revisits in trajectory recommendation

Aug 17, 2017
Aditya Krishna Menon, Dawei Chen, Lexing Xie, Cheng Soon Ong

Trajectory recommendation is the problem of recommending a sequence of places in a city for a tourist to visit. It is strongly desirable for the recommended sequence to avoid loops, as tourists typically would not wish to revisit the same location. Given some learned model that scores sequences, how can we then find the highest-scoring sequence that is loop-free? This paper studies this problem, with three contributions. First, we detail three distinct approaches to the problem -- graph-based heuristics, integer linear programming, and list extensions of the Viterbi algorithm -- and qualitatively summarise their strengths and weaknesses. Second, we explicate how two ostensibly different approaches to the list Viterbi algorithm are in fact fundamentally identical. Third, we conduct experiments on real-world trajectory recommendation datasets to identify the tradeoffs imposed by each of the three approaches. Overall, our results indicate that a greedy graph-based heuristic offer excellent performance and runtime, leading us to recommend its use for removing loops at prediction time.

* 6 pages 

  Access Paper or Ask Questions

Dynamic Modeling of User Preferences for Stable Recommendations

Apr 11, 2021
Oluwafemi Olaleke, Ivan Oseledets, Evgeny Frolov

In domains where users tend to develop long-term preferences that do not change too frequently, the stability of recommendations is an important factor of the perceived quality of a recommender system. In such cases, unstable recommendations may lead to poor personalization experience and distrust, driving users away from a recommendation service. We propose an incremental learning scheme that mitigates such problems through the dynamic modeling approach. It incorporates a generalized matrix form of a partial differential equation integrator that yields a dynamic low-rank approximation of time-dependent matrices representing user preferences. The scheme allows extending the famous PureSVD approach to time-aware settings and significantly improves its stability without sacrificing the accuracy in standard top-$n$ recommendations tasks.

* 8 pages, 1 figure, accepted at UMAP'21 conference 

  Access Paper or Ask Questions