Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

A Study of BFLOAT16 for Deep Learning Training

Jun 10, 2019
Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, Pradeep Dubey

This paper presents the first comprehensive empirical study demonstrating the efficacy of the Brain Floating Point (BFLOAT16) half-precision format for DeepLearning training across image classification, speech recognition, language model-ing, generative networks, and industrial recommendation systems. BFLOAT16 is attractive for Deep Learning training for two reasons: the range of values it can represent is the same as that of IEEE 754 floating-point format (FP32) and conversion to/from FP32 is simple. Maintaining the same range as FP32 is important to ensure that no hyper-parameter tuning is required for convergence; e.g., IEEE 754compliant half-precision floating point (FP16) requires hyper-parameter tuning. In this paper, we discuss the flow of tensors and various key operations in mixed-precision training and delve into details of operations, such as the rounding modes for converting FP32 tensors to BFLOAT16. We have implemented a method to emulate BFLOAT16 operations in Tensorflow, Caffe2, IntelCaffe, and Neon for our experiments. Our results show that deep learning training using BFLOAT16tensors achieves the same state-of-the-art (SOTA) results across domains as FP32tensors in the same number of iterations and with no changes to hyper-parameters.

  Access Paper or Ask Questions

Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data

Jan 28, 2018
Ning Liu, Ying Liu, Brent Logan, Zhiyuan Xu, Jian Tang, Yanzhi Wang

This paper presents the first deep reinforcement learning (DRL) framework to estimate the optimal Dynamic Treatment Regimes from observational medical data. This framework is more flexible and adaptive for high dimensional action and state spaces than existing reinforcement learning methods to model real-life complexity in heterogeneous disease progression and treatment choices, with the goal of providing doctor and patients the data-driven personalized decision recommendations. The proposed DRL framework comprises (i) a supervised learning step to predict the most possible expert actions, and (ii) a deep reinforcement learning step to estimate the long-term value function of Dynamic Treatment Regimes. Both steps depend on deep neural networks. As a key motivational example, we have implemented the proposed framework on a data set from the Center for International Bone Marrow Transplant Research (CIBMTR) registry database, focusing on the sequence of prevention and treatments for acute and chronic graft versus host disease after transplantation. In the experimental results, we have demonstrated promising accuracy in predicting human experts' decisions, as well as the high expected reward function in the DRL-based dynamic treatment regimes.

  Access Paper or Ask Questions

How Different Groups Prioritize Ethical Values for Responsible AI

May 16, 2022
Maurice Jakesch, Zana Buçinca, Saleema Amershi, Alexandra Olteanu

Private companies, public sector organizations, and academic groups have outlined ethical values they consider important for responsible artificial intelligence technologies. While their recommendations converge on a set of central values, little is known about the values a more representative public would find important for the AI technologies they interact with and might be affected by. We conducted a survey examining how individuals perceive and prioritize responsible AI values across three groups: a representative sample of the US population (N=743), a sample of crowdworkers (N=755), and a sample of AI practitioners (N=175). Our results empirically confirm a common concern: AI practitioners' value priorities differ from those of the general public. Compared to the US-representative sample, AI practitioners appear to consider responsible AI values as less important and emphasize a different set of values. In contrast, self-identified women and black respondents found responsible AI values more important than other groups. Surprisingly, more liberal-leaning participants, rather than participants reporting experiences with discrimination, were more likely to prioritize fairness than other groups. Our findings highlight the importance of paying attention to who gets to define responsible AI.

* 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT '22), June 21-24, 2022, Seoul, Republic of Korea 

  Access Paper or Ask Questions

AHP: Learning to Negative Sample for Hyperedge Prediction

Apr 15, 2022
Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, Kijung Shin

Hypergraphs (i.e., sets of hyperedges) naturally represent group relations (e.g., researchers co-authoring a paper and ingredients used together in a recipe), each of which corresponds to a hyperedge (i.e., a subset of nodes). Predicting future or missing hyperedges bears significant implications for many applications (e.g., collaboration and recipe recommendation). What makes hyperedge prediction particularly challenging is the vast number of non-hyperedge subsets, which grows exponentially with the number of nodes. Since it is prohibitive to use all of them as negative examples for model training, it is inevitable to sample a very small portion of them, and to this end, heuristic sampling schemes have been employed. However, trained models suffer from poor generalization capability for examples of different natures. In this paper, we propose AHP, an adversarial training-based hyperedge-prediction method. It learns to sample negative examples without relying on any heuristic schemes. Using six real hypergraphs, we show that AHP generalizes better to negative examples of various natures. It yields up to 28.2% higher AUROC than the best existing methods and often even outperforms its variants with sampling schemes tailored to test sets.

* To be published in the Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2022) 

  Access Paper or Ask Questions

Why Do Machine Learning Practitioners Still Use Manual Tuning? A Qualitative Study

Mar 03, 2022
Niklas Hasebrook, Felix Morsbach, Niclas Kannengießer, Jörg Franke, Frank Hutter, Ali Sunyaev

Current advanced hyperparameter optimization (HPO) methods, such as Bayesian optimization, have high sampling efficiency and facilitate replicability. Nonetheless, machine learning (ML) practitioners (e.g., engineers, scientists) mostly apply less advanced HPO methods, which can increase resource consumption during HPO or lead to underoptimized ML models. Therefore, we suspect that practitioners choose their HPO method to achieve different goals, such as decrease practitioner effort and target audience compliance. To develop HPO methods that align with such goals, the reasons why practitioners decide for specific HPO methods must be unveiled and thoroughly understood. Because qualitative research is most suitable to uncover such reasons and find potential explanations for them, we conducted semi-structured interviews to explain why practitioners choose different HPO methods. The interviews revealed six principal practitioner goals (e.g., increasing model comprehension), and eleven key factors that impact decisions for HPO methods (e.g., available computing resources). We deepen the understanding about why practitioners decide for different HPO methods and outline recommendations for improvements of HPO methods by aligning them with practitioner goals.

  Access Paper or Ask Questions

Generalized Causal Tree for Uplift Modeling

Feb 04, 2022
Preetam Nandy, Xiufan Yu, Wanjun Liu, Ye Tu, Kinjal Basu, Shaunak Chatterjee

Uplift modeling is crucial in various applications ranging from marketing and policy-making to personalized recommendations. The main objective is to learn optimal treatment allocations for a heterogeneous population. A primary line of existing work modifies the loss function of the decision tree algorithm to identify cohorts with heterogeneous treatment effects. Another line of work estimates the individual treatment effects separately for the treatment group and the control group using off-the-shelf supervised learning algorithms. The former approach that directly models the heterogeneous treatment effect is known to outperform the latter in practice. However, the existing tree-based methods are mostly limited to a single treatment and a single control use case, except for a handful of extensions to multiple discrete treatments. In this paper, we fill this gap in the literature by proposing a generalization to the tree-based approaches to tackle multiple discrete and continuous-valued treatments. We focus on a generalization of the well-known causal tree algorithm due to its desirable statistical properties, but our generalization technique can be applied to other tree-based approaches as well. We perform extensive experiments to showcase the efficacy of our method when compared to other methods.

  Access Paper or Ask Questions

Machine Learning-Assisted Analysis of Small Angle X-ray Scattering

Nov 16, 2021
Piotr Tomaszewski, Shun Yu, Markus Borg, Jerk Rönnols

Small angle X-ray scattering (SAXS) is extensively used in materials science as a way of examining nanostructures. The analysis of experimental SAXS data involves mapping a rather simple data format to a vast amount of structural models. Despite various scientific computing tools to assist the model selection, the activity heavily relies on the SAXS analysts' experience, which is recognized as an efficiency bottleneck by the community. To cope with this decision-making problem, we develop and evaluate the open-source, Machine Learning-based tool SCAN (SCattering Ai aNalysis) to provide recommendations on model selection. SCAN exploits multiple machine learning algorithms and uses models and a simulation tool implemented in the SasView package for generating a well defined set of datasets. Our evaluation shows that SCAN delivers an overall accuracy of 95%-97%. The XGBoost Classifier has been identified as the most accurate method with a good balance between accuracy and training time. With eleven predefined structural models for common nanostructures and an easy draw-drop function to expand the number and types training models, SCAN can accelerate the SAXS data analysis workflow.

* Accepted for the 9th Swedish Workshop on Data Science 

  Access Paper or Ask Questions

Route Optimization via Environment-Aware Deep Network and Reinforcement Learning

Nov 16, 2021
Pengzhan Guo, Keli Xiao, Zeyang Ye, Wei Zhu

Vehicle mobility optimization in urban areas is a long-standing problem in smart city and spatial data analysis. Given the complex urban scenario and unpredictable social events, our work focuses on developing a mobile sequential recommendation system to maximize the profitability of vehicle service providers (e.g., taxi drivers). In particular, we treat the dynamic route optimization problem as a long-term sequential decision-making task. A reinforcement-learning framework is proposed to tackle this problem, by integrating a self-check mechanism and a deep neural network for customer pick-up point monitoring. To account for unexpected situations (e.g., the COVID-19 outbreak), our method is designed to be capable of handling related environment changes with a self-adaptive parameter determination mechanism. Based on the yellow taxi data in New York City and vicinity before and after the COVID-19 outbreak, we have conducted comprehensive experiments to evaluate the effectiveness of our method. The results show consistently excellent performance, from hourly to weekly measures, to support the superiority of our method over the state-of-the-art methods (i.e., with more than 98% improvement in terms of the profitability for taxi drivers).

  Access Paper or Ask Questions