Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

LLFR: A Lanczos-Based Latent Factor Recommender for Big Data Scenarios

Jun 14, 2016
Maria Kalantzi

The purpose if this master's thesis is to study and develop a new algorithmic framework for Collaborative Filtering to produce recommendations in the top-N recommendation problem. Thus, we propose Lanczos Latent Factor Recommender (LLFR); a novel "big data friendly" collaborative filtering algorithm for top-N recommendation. Using a computationally efficient Lanczos-based procedure, LLFR builds a low dimensional item similarity model, that can be readily exploited to produce personalized ranking vectors over the item space. A number of experiments on real datasets indicate that LLFR outperforms other state-of-the-art top-N recommendation methods from a computational as well as a qualitative perspective. Our experimental results also show that its relative performance gains, compared to competing methods, increase as the data get sparser, as in the Cold Start Problem. More specifically, this is true both when the sparsity is generalized - as in the New Community Problem, a very common problem faced by real recommender systems in their beginning stages, when there is not sufficient number of ratings for the collaborative filtering algorithms to uncover similarities between items or users - and in the very interesting case where the sparsity is localized in a small fraction of the dataset - as in the New Users Problem, where new users are introduced to the system, they have not rated many items and thus, the CF algorithm can not make reliable personalized recommendations yet.

* 65 pages, MSc Thesis (in Greek) 

  Access Paper or Ask Questions

SAGA: A Submodular Greedy Algorithm For Group Recommendation

Dec 25, 2017
Shameem A Puthiya Parambath, Nishant Vijayakumar, Sanjay Chawla

In this paper, we propose a unified framework and an algorithm for the problem of group recommendation where a fixed number of items or alternatives can be recommended to a group of users. The problem of group recommendation arises naturally in many real world contexts, and is closely related to the budgeted social choice problem studied in economics. We frame the group recommendation problem as choosing a subgraph with the largest group consensus score in a completely connected graph defined over the item affinity matrix. We propose a fast greedy algorithm with strong theoretical guarantees, and show that the proposed algorithm compares favorably to the state-of-the-art group recommendation algorithms according to commonly used relevance and coverage performance measures on benchmark dataset.

* AAAI 2018 

  Access Paper or Ask Questions

An Analysis of the Features Considerable for NFT Recommendations

May 01, 2022
Dinuka Piyadigama, Guhanathan Poravi

This research explores the methods that NFTs can be recommended to people who interact with NFT-marketplaces to explore NFTs of preference and similarity to what they have been searching for. While exploring past methods that can be adopted for recommendations, the use of NFT traits for recommendations has been explored. The outcome of the research highlights the necessity of using multiple Recommender Systems to present the user with the best possible NFTs when interacting with decentralized systems.


  Access Paper or Ask Questions

Understanding the Effectiveness of Reviews in E-commerce Top-N Recommendation

Jun 29, 2021
Zhichao Xu, Hansi Zeng, Qingyao Ai

Modern E-commerce websites contain heterogeneous sources of information, such as numerical ratings, textual reviews and images. These information can be utilized to assist recommendation. Through textual reviews, a user explicitly express her affinity towards the item. Previous researchers found that by using the information extracted from these reviews, we can better profile the users' explicit preferences as well as the item features, leading to the improvement of recommendation performance. However, most of the previous algorithms were only utilizing the review information for explicit-feedback problem i.e. rating prediction, and when it comes to implicit-feedback ranking problem such as top-N recommendation, the usage of review information has not been fully explored. Seeing this gap, in this work, we investigate the effectiveness of textual review information for top-N recommendation under E-commerce settings. We adapt several SOTA review-based rating prediction models for top-N recommendation tasks and compare them to existing top-N recommendation models from both performance and efficiency. We find that models utilizing only review information can not achieve better performances than vanilla implicit-feedback matrix factorization method. When utilizing review information as a regularizer or auxiliary information, the performance of implicit-feedback matrix factorization method can be further improved. However, the optimal model structure to utilize textual reviews for E-commerce top-N recommendation is yet to be determined.

* in proceedings of ICTIR 2021 

  Access Paper or Ask Questions

MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection

Feb 13, 2020
Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng, Zhenguo Li

Recommender systems often face heterogeneous datasets containing highly personalized historical data of users, where no single model could give the best recommendation for every user. We observe this ubiquitous phenomenon on both public and private datasets and address the model selection problem in pursuit of optimizing the quality of recommendation for each user. We propose a meta-learning framework to facilitate user-level adaptive model selection in recommender systems. In this framework, a collection of recommenders is trained with data from all users, on top of which a model selector is trained via meta-learning to select the best single model for each user with the user-specific historical data. We conduct extensive experiments on two public datasets and a real-world production dataset, demonstrating that our proposed framework achieves improvements over single model baselines and sample-level model selector in terms of AUC and LogLoss. In particular, the improvements may lead to huge profit gain when deployed in online recommender systems.


  Access Paper or Ask Questions

Link Stream Graph for Temporal Recommendations

Mar 27, 2019
Armel Jacques Nzekon Nzeko'o, Maurice Tchuente, Matthieu Latapy

Several researches on recommender systems are based on explicit rating data, but in many real world e-commerce platforms, ratings are not always available, and in those situations, recommender systems have to deal with implicit data such as users' purchase history, browsing history and streaming history. In this context, classical bipartite user-item graphs (BIP) are widely used to compute top-N recommendations. However, these graphs have some limitations, particularly in terms of taking temporal dynamic into account. This is not good because users' preference change over time. To overcome this limit, the Session-based Temporal Graph (STG) was proposed by Xiang et al. to combine long- and short-term preferences in a graph-based recommender system. But in the STG, time is divided into slices and therefore considered discontinuously. This approach loses details of the real temporal dynamics of user actions. To address this challenge, we propose the Link Stream Graph (LSG) which is an extension of link stream representation proposed by Latapy et al. and which allows to model interactions between users and items by considering time continuously. Experiments conducted on four real world implicit datasets for temporal recommendation, with 3 evaluation metrics, show that LSG is the best in 9 out of 12 cases compared to BIP and STG which are the most used state-of-the-art recommender graphs.


  Access Paper or Ask Questions

Batch versus Sequential Active Learning for Recommender Systems

Jan 19, 2022
Toon De Pessemier, Sander Vanhove, Luc Martens

Recommender systems have been investigated for many years, with the aim of generating the most accurate recommendations possible. However, available data about new users is often insufficient, leading to inaccurate recommendations; an issue that is known as the cold-start problem. A solution can be active learning. Active learning strategies proactively select items and ask users to rate these. This way, detailed user preferences can be acquired and as a result, more accurate recommendations can be offered to the user. In this study, we compare five active learning algorithms, combined with three different predictor algorithms, which are used to estimate to what extent the user would like the item that is asked to rate. In addition, two modes are tested for selecting the items: batch mode (all items at once), and sequential mode (the items one by one). Evaluation of the recommender in terms of rating prediction, decision support, and the ranking of items, showed that sequential mode produces the most accurate recommendations for dense data sets. Differences between the active learning algorithms are small. For most active learners, the best predictor turned out to be FunkSVD in combination with sequential mode.

* 11 pages, 12 figures, [email protected] RecSys 2021, 4th Workshop on Online Recommender Systems and User Modeling, in conjunction with the 15th ACM Conference on Recommender Systems 

  Access Paper or Ask Questions

Developing Multi-Task Recommendations with Long-Term Rewards via Policy Distilled Reinforcement Learning

Jan 27, 2020
Xi Liu, Li Li, Ping-Chun Hsieh, Muhe Xie, Yong Ge, Rui Chen

With the explosive growth of online products and content, recommendation techniques have been considered as an effective tool to overcome information overload, improve user experience, and boost business revenue. In recent years, we have observed a new desideratum of considering long-term rewards of multiple related recommendation tasks simultaneously. The consideration of long-term rewards is strongly tied to business revenue and growth. Learning multiple tasks simultaneously could generally improve the performance of individual task due to knowledge sharing in multi-task learning. While a few existing works have studied long-term rewards in recommendations, they mainly focus on a single recommendation task. In this paper, we propose {\it PoDiRe}: a \underline{po}licy \underline{di}stilled \underline{re}commender that can address long-term rewards of recommendations and simultaneously handle multiple recommendation tasks. This novel recommendation solution is based on a marriage of deep reinforcement learning and knowledge distillation techniques, which is able to establish knowledge sharing among different tasks and reduce the size of a learning model. The resulting model is expected to attain better performance and lower response latency for real-time recommendation services. In collaboration with Samsung Game Launcher, one of the world's largest commercial mobile game platforms, we conduct a comprehensive experimental study on large-scale real data with hundreds of millions of events and show that our solution outperforms many state-of-the-art methods in terms of several standard evaluation metrics.


  Access Paper or Ask Questions

<<
31
32
33
34
35
36
37
38
39
40
41
42
43
>>