Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Comprehensive Analysis of the Object Detection Pipeline on UAVs

Mar 01, 2022
Leon Amadeus Varga, Sebastian Koch, Andreas Zell

An object detection pipeline comprises a camera that captures the scene and an object detector that processes these images. The quality of the images directly affects the performance of the object detector. Many works nowadays focus either on improving the image quality or improving the object detection models independently, but neglect the importance of joint optimization of the two subsystems. In this paper, we first empirically analyze the influence of seven parameters (quantization, compression, resolution, color model, image distortion, gamma correction, additional channels) in remote sensing applications. For our experiments, we utilize three UAV data sets from different domains and a mixture of large and small state-of-the-art object detector models to provide an extensive evaluation of the influence of the pipeline parameters. Additionally, we realize an object detection pipeline prototype on an embedded platform for an UAV and give a best practice recommendation for building object detection pipelines based on our findings. We show that not all parameters have an equal impact on detection accuracy and data throughput, and that by using a suitable compromise between parameters we are able to improve detection accuracy for lightweight object detection models, while keeping the same data throughput.

* Submitted IROS22 

  Access Paper or Ask Questions

Quality and Computation Time in Optimization Problems

Nov 20, 2021
Zhicheng He

Optimization problems are crucial in artificial intelligence. Optimization algorithms are generally used to adjust the performance of artificial intelligence models to minimize the error of mapping inputs to outputs. Current evaluation methods on optimization algorithms generally consider the performance in terms of quality. However, not all optimization algorithms for all test cases are evaluated equal from quality, the computation time should be also considered for optimization tasks. In this paper, we investigate the quality and computation time of optimization algorithms in optimization problems, instead of the one-for-all evaluation of quality. We select the well-known optimization algorithms (Bayesian optimization and evolutionary algorithms) and evaluate them on the benchmark test functions in terms of quality and computation time. The results show that BO is suitable to be applied in the optimization tasks that are needed to obtain desired quality in the limited function evaluations, and the EAs are suitable to search the optimal of the tasks that are allowed to find the optimal solution with enough function evaluations. This paper provides the recommendation to select suitable optimization algorithms for optimization problems with different numbers of function evaluations, which contributes to the efficiency that obtains the desired quality with less computation time for optimization problems.

* 6 pages, 3 figures, 1 table 

  Access Paper or Ask Questions

Dynamic Parameterized Network for CTR Prediction

Nov 09, 2021
Jian Zhu, Congcong Liu, Pei Wang, Xiwei Zhao, Guangpeng Chen, Junsheng Jin, Changping Peng, Zhangang Lin, Jingping Shao

Learning to capture feature relations effectively and efficiently is essential in click-through rate (CTR) prediction of modern recommendation systems. Most existing CTR prediction methods model such relations either through tedious manually-designed low-order interactions or through inflexible and inefficient high-order interactions, which both require extra DNN modules for implicit interaction modeling. In this paper, we proposed a novel plug-in operation, Dynamic Parameterized Operation (DPO), to learn both explicit and implicit interaction instance-wisely. We showed that the introduction of DPO into DNN modules and Attention modules can respectively benefit two main tasks in CTR prediction, enhancing the adaptiveness of feature-based modeling and improving user behavior modeling with the instance-wise locality. Our Dynamic Parameterized Networks significantly outperforms state-of-the-art methods in the offline experiments on the public dataset and real-world production dataset, together with an online A/B test. Furthermore, the proposed Dynamic Parameterized Networks has been deployed in the ranking system of one of the world's largest e-commerce companies, serving the main traffic of hundreds of millions of active users.


  Access Paper or Ask Questions

The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

Aug 02, 2021
Jorge Oliveira, Francesco Renna, Paulo Dias Costa, Marcelo Nogueira, Cristina Oliveira, Carlos Ferreira, Alipio Jorge, Sandra Mattos, Thamine Hatem, Thiago Tavares, Andoni Elola, Ali Bahrami Rad, Reza Sameni, Gari D Clifford, Miguel T. Coimbra

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. As a result, current machine learning algorithms are unable to classify such waves. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively.

* 11 pages, 6 tables, 7 figures 

  Access Paper or Ask Questions

Dynamic Planning and Learning under Recovering Rewards

Jun 28, 2021
David Simchi-Levi, Zeyu Zheng, Feng Zhu

Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce a general class of multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from at most $K$ out of $N$ different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non parametrically recovers as the idle time increases. With the objective of maximizing expected cumulative rewards over $T$ time periods, we propose, construct and prove performance guarantees for a class of "Purely Periodic Policies". For the offline problem when all model parameters are known, our proposed policy obtains an approximation ratio that is at the order of $1-\mathcal O(1/\sqrt{K})$, which is asymptotically optimal when $K$ grows to infinity. For the online problem when the model parameters are unknown and need to be learned, we design an Upper Confidence Bound (UCB) based policy that approximately has $\widetilde{\mathcal O}(N\sqrt{T})$ regret against the offline benchmark. Our framework and policy design may have the potential to be adapted into other offline planning and online learning applications with non-stationary and recovering rewards.

* Accepted by ICML 2021 

  Access Paper or Ask Questions

The Role of Entropy in Guiding a Connection Prover

May 31, 2021
Zsolt Zombori, Josef Urban, Miroslav Olšák

In this work we study how to learn good algorithms for selecting reasoning steps in theorem proving. We explore this in the connection tableau calculus implemented by leanCoP where the partial tableau provides a clean and compact notion of a state to which a limited number of inferences can be applied. We start by incorporating a state-of-the-art learning algorithm -- a graph neural network (GNN) -- into the plCoP theorem prover. Then we use it to observe the system's behaviour in a reinforcement learning setting, i.e., when learning inference guidance from successful Monte-Carlo tree searches on many problems. Despite its better pattern matching capability, the GNN initially performs worse than a simpler previously used learning algorithm. We observe that the simpler algorithm is less confident, i.e., its recommendations have higher entropy. This leads us to explore how the entropy of the inference selection implemented via the neural network influences the proof search. This is related to research in human decision-making under uncertainty, and in particular the probability matching theory. Our main result shows that a proper entropy regularisation, i.e., training the GNN not to be overconfident, greatly improves plCoP's performance on a large mathematical corpus.


  Access Paper or Ask Questions

Novel Recording Studio Features for Music Information Retrieval

Jan 25, 2021
Tim Ziemer, Pattararat Kiattipadungkul, Tanyarin Karuchit

In the recording studio, producers of Electronic Dance Music (EDM) spend more time creating, shaping, mixing and mastering sounds, than with compositional aspects or arrangement. They tune the sound by close listening and by leveraging audio metering and audio analysis tools, until they successfully creat the desired sound aesthetics. DJs of EDM tend to play sets of songs that meet their sound ideal. We therefore suggest using audio metering and monitoring tools from the recording studio to analyze EDM, instead of relying on conventional low-level audio features. We test our novel set of features by a simple classification task. We attribute songs to DJs who would play the specific song. This new set of features and the focus on DJ sets is targeted at EDM as it takes the producer and DJ culture into account. With simple dimensionality reduction and machine learning these features enable us to attribute a song to a DJ with an accuracy of 63%. The features from the audio metering and monitoring tools in the recording studio could serve for many applications in Music Information Retrieval, such as genre, style and era classification and music recommendation for both DJs and consumers of electronic dance music.

* 13 pages, 9 figures, Meeting of the Acoustical Society of America, Dec. 2020 

  Access Paper or Ask Questions

DSSLP: A Distributed Framework for Semi-supervised Link Prediction

Mar 10, 2020
Dalong Zhang, Xianzheng Song, Ziqi Liu, Zhiqiang Zhang, Xin Huang, Lin Wang, Jun Zhou

Link prediction is widely used in a variety of industrial applications, such as merchant recommendation, fraudulent transaction detection, and so on. However, it's a great challenge to train and deploy a link prediction model on industrial-scale graphs with billions of nodes and edges. In this work, we present a scalable and distributed framework for semi-supervised link prediction problem (named DSSLP), which is able to handle industrial-scale graphs. Instead of training model on the whole graph, DSSLP is proposed to train on the \emph{$k$-hops neighborhood} of nodes in a mini-batch setting, which helps reduce the scale of the input graph and distribute the training procedure. In order to generate negative examples effectively, DSSLP contains a distributed batched runtime sampling module. It implements uniform and dynamic sampling approaches, and is able to adaptively construct positive and negative examples to guide the training process. Moreover, DSSLP proposes a model-split strategy to accelerate the speed of inference process of the link prediction task. Experimental results demonstrate that the effectiveness and efficiency of DSSLP in serval public datasets as well as real-world datasets of industrial-scale graphs.


  Access Paper or Ask Questions

Machine learning driven synthesis of few-layered WTe2

Oct 10, 2019
Manzhang Xu, Bijun Tang, Chao Zhu, Yuhao Lu, Chao Zhu, Lu Zheng, Jingyu Zhang, Nannan Han, Yuxi Guo, Jun Di, Pin Song, Yongmin He, Lixing Kang, Zhiyong Zhang, Wu Zhao, Cuntai Guan, Xuewen Wang, Zheng Liu

Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic device applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for the further study. Traditional exploration of the optimal synthesis conditions of novel materials is based on the trial-and-error approach, which is time consuming, costly and laborious. Recently, machine learning (ML) has demonstrated promising capability in guiding material synthesis through effectively learning from the past data and then making recommendations. Here, we report the implementation of supervised ML for the chemical vapor deposition (CVD) synthesis of high-quality 1D few-layered WTe2 nanoribbons (NRs). The synthesis parameters of the WTe2 NRs are optimized by the trained ML model. On top of that, the growth mechanism of as-synthesized 1T' few-layered WTe2 NRs is further proposed, which may inspire the growth strategies for other 1D nanostructures. Our findings suggest that ML is a powerful and efficient approach to aid the synthesis of 1D nanostructures, opening up new opportunities for intelligent material development.


  Access Paper or Ask Questions

<<
363
364
365
366
367
368
369
370
371
372
373
374
375
>>