Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Exploring the Assessment List for Trustworthy AI in the Context of Advanced Driver-Assistance Systems

Mar 04, 2021
Markus Borg, Joshua Bronson, Linus Christensson, Fredrik Olsson, Olof Lennartsson, Elias Sonnsjö, Hamid Ebabi, Martin Karsberg

Artificial Intelligence (AI) is increasingly used in critical applications. Thus, the need for dependable AI systems is rapidly growing. In 2018, the European Commission appointed experts to a High-Level Expert Group on AI (AI-HLEG). AI-HLEG defined Trustworthy AI as 1) lawful, 2) ethical, and 3) robust and specified seven corresponding key requirements. To help development organizations, AI-HLEG recently published the Assessment List for Trustworthy AI (ALTAI). We present an illustrative case study from applying ALTAI to an ongoing development project of an Advanced Driver-Assistance System (ADAS) that relies on Machine Learning (ML). Our experience shows that ALTAI is largely applicable to ADAS development, but specific parts related to human agency and transparency can be disregarded. Moreover, bigger questions related to societal and environmental impact cannot be tackled by an ADAS supplier in isolation. We present how we plan to develop the ADAS to ensure ALTAI-compliance. Finally, we provide three recommendations for the next revision of ALTAI, i.e., life-cycle variants, domain-specific adaptations, and removed redundancy.

* Accepted for publication in the Proc. of the 2nd Workshop on Ethics in Software Engineering Research and Practice 

  Access Paper or Ask Questions

How to Train PointGoal Navigation Agents on a (Sample and Compute) Budget

Dec 11, 2020
Erik Wijmans, Irfan Essa, Dhruv Batra

PointGoal navigation has seen significant recent interest and progress, spurred on by the Habitat platform and associated challenge. In this paper, we study PointGoal navigation under both a sample budget (75 million frames) and a compute budget (1 GPU for 1 day). We conduct an extensive set of experiments, cumulatively totaling over 50,000 GPU-hours, that let us identify and discuss a number of ostensibly minor but significant design choices -- the advantage estimation procedure (a key component in training), visual encoder architecture, and a seemingly minor hyper-parameter change. Overall, these design choices to lead considerable and consistent improvements over the baselines present in Savva et al. Under a sample budget, performance for RGB-D agents improves 8 SPL on Gibson (14% relative improvement) and 20 SPL on Matterport3D (38% relative improvement). Under a compute budget, performance for RGB-D agents improves by 19 SPL on Gibson (32% relative improvement) and 35 SPL on Matterport3D (220% relative improvement). We hope our findings and recommendations will make serve to make the community's experiments more efficient.


  Access Paper or Ask Questions

PRVNet: Variational Autoencoders for Massive MIMO CSI Feedback

Nov 09, 2020
Mostafa Hussien, Kim Khoa Nguyen, Mohamed Cheriet

In a frequency division duplexing multiple-input multiple-output (FDD-MIMO) system, the user equipment (UE) send the downlink channel state information (CSI) to the base station for performance improvement. However, with the growing complexity of MIMO systems, this feedback becomes expensive and has a negative impact on the bandwidth. Although this problem has been largely studied in the literature, the noisy nature of the feedback channel is less considered. In this paper, we introduce PRVNet, a neural architecture based on variational autoencoders (VAE). VAE gained large attention in many fields (e.g., image processing, language models, or recommendation system). However, it received less attention in the communication domain generally and in CSI feedback problem specifically. We also introduce a different regularization parameter for the learning objective, which proved to be crucial for achieving competitive performance. In addition, we provide an efficient way to tune this parameter using KL-annealing. Empirically, we show that the proposed model significantly outperforms state-of-the-art, including two neural network approaches. The proposed model is also proved to be more robust against different levels of noise.


  Access Paper or Ask Questions

KrigHedge: Gaussian Process Surrogates for Delta Hedging

Nov 03, 2020
Mike Ludkovski, Yuri Saporito

We investigate a machine learning approach to option Greeks approximation based on Gaussian process (GP) surrogates. The method takes in noisily observed option prices, fits a nonparametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Our motivation is to compute Greeks in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We further discuss the application to Delta hedging, including a new Lemma that relates quality of the Delta approximation to discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matern kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.

* 29 pages, 6 figures, plus RMarkdown supplement 

  Access Paper or Ask Questions

KrigHedge: GP Surrogates for Delta Hedging

Oct 26, 2020
Mike Ludkovski, Yuri Saporito

We investigate a machine learning approach to option Greeks approximation based on Gaussian process (GP) surrogates. The method takes in noisily observed option prices, fits a nonparametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Our motivation is to compute Greeks in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We further discuss the application to Delta hedging, including a new Lemma that relates quality of the Delta approximation to discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matern kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.


  Access Paper or Ask Questions

Neural Networks based approaches for Major Depressive Disorder and Bipolar Disorder Diagnosis using EEG signals: A review

Sep 28, 2020
Sana Yasin, Syed Asad Hussain, Sinem Aslan, Imran Raza, Muhammad Muzammel, Alice Othmani

Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There's a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this work, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.

* 29 pages,2 figures 

  Access Paper or Ask Questions

A Survey on Causal Inference

Feb 05, 2020
Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, Aidong Zhang

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.


  Access Paper or Ask Questions

Causality matters in medical imaging

Dec 17, 2019
Daniel C. Castro, Ian Walker, Ben Glocker

This article discusses how the language of causality can shed new light on the major challenges in machine learning for medical imaging: 1) data scarcity, which is the limited availability of high-quality annotations, and 2) data mismatch, whereby a trained algorithm may fail to generalize in clinical practice. Looking at these challenges through the lens of causality allows decisions about data collection, annotation procedures, and learning strategies to be made (and scrutinized) more transparently. We discuss how causal relationships between images and annotations can not only have profound effects on the performance of predictive models, but may even dictate which learning strategies should be considered in the first place. For example, we conclude that semi-supervision may be unsuitable for image segmentation---one of the possibly surprising insights from our causal analysis, which is illustrated with representative real-world examples of computer-aided diagnosis (skin lesion classification in dermatology) and radiotherapy (automated contouring of tumours). We highlight that being aware of and accounting for the causal relationships in medical imaging data is important for the safe development of machine learning and essential for regulation and responsible reporting. To facilitate this we provide step-by-step recommendations for future studies.

* 20 pages, 5 figures, 4 tables 

  Access Paper or Ask Questions

Reinforcement Learning for Personalized Dialogue Management

Aug 01, 2019
Floris den Hengst, Mark Hoogendoorn, Frank van Harmelen, Joost Bosman

Language systems have been of great interest to the research community and have recently reached the mass market through various assistant platforms on the web. Reinforcement Learning methods that optimize dialogue policies have seen successes in past years and have recently been extended into methods that personalize the dialogue, e.g. take the personal context of users into account. These works, however, are limited to personalization to a single user with whom they require multiple interactions and do not generalize the usage of context across users. This work introduces a problem where a generalized usage of context is relevant and proposes two Reinforcement Learning (RL)-based approaches to this problem. The first approach uses a single learner and extends the traditional POMDP formulation of dialogue state with features that describe the user context. The second approach segments users by context and then employs a learner per context. We compare these approaches in a benchmark of existing non-RL and RL-based methods in three established and one novel application domain of financial product recommendation. We compare the influence of context and training experiences on performance and find that learning approaches generally outperform a handcrafted gold standard.


  Access Paper or Ask Questions

<<
360
361
362
363
364
365
366
367
368
369
370
371
372
>>