Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Putting Ridesharing to the Test: Efficient and Scalable Solutions and the Power of Dynamic Vehicle Relocation

Feb 12, 2020
Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, Boi Faltings

We perform a systematic evaluation of a diverse set of algorithms for the ridesharing problem which is, to the best of our knowledge, one of the largest and most comprehensive to date. In particular, we evaluate 12 different algorithms over 12 metrics related to global efficiency, complexity, passenger, driver, and platform incentives. Our evaluation setting is specifically designed to resemble reality as closely as possible. We achieve this by (a) using actual data from the NYC's yellow taxi trip records, both for modeling customer requests, and taxis (b) following closely the pricing model employed by ridesharing platforms and (c) running our simulations to the scale of the actual problem faced by the ridesharing platforms. Our results provide a clear-cut recommendation to ridesharing platforms on which solutions can be employed in practice and demonstrate the large potential for efficiency gains. Moreover, we show that simple, lightweight relocation schemes -- which can be used as independent components to any ridesharing algorithm -- can significantly improve Quality of Service metrics by up to 50%. As a highlight of our findings, we identify a scalable, on-device heuristic that offers an efficient, end-to-end solution for the Dynamic Ridesharing and Fleet Relocation problem.


  Access Paper or Ask Questions

Mining User Behaviour from Smartphone data: a literature review

Feb 03, 2020
Valentino Servizi, Francisco C. Pereira, Marie K. Anderson, Otto A. Nielsen

To study users' travel behaviour and travel time between origin and destination, researchers employ travel surveys. Although there is consensus in the field about the potential, after over ten years of research and field experimentation, Smartphone-based travel surveys still did not take off to a large scale. Here, computer intelligence algorithms take the role that operators have in Traditional Travel Surveys; since we train each algorithm on data, performances rest on the data quality, thus on the ground truth. Inaccurate validations affect negatively: labels, algorithms' training, travel diaries precision, and therefore data validation, within a very critical loop. Interestingly, boundaries are proven burdensome to push even for Machine Learning methods. To support optimal investment decisions for practitioners, we expose the drivers they should consider when assessing what they need against what they get. This paper highlights and examines the critical aspects of the underlying research and provides some recommendations: (i) from the device perspective, on the main physical limitations; (ii) from the application perspective, the methodological framework deployed for the automatic generation of travel diaries; (iii)from the ground truth perspective, the relationship between user interaction, methods, and data.


  Access Paper or Ask Questions

Mining User Behaviour from Smartphone data, a literature review

Dec 24, 2019
Valentino Servizi, Francisco C. Pereira, Marie K. Anderson, Otto A. Nielsen

To study users' travel behaviour and travel time between origin and destination, researchers employ travel surveys. Although there is consensus in the field about the potential, after over ten years of research and field experimentation, Smartphone-based travel surveys still did not take off to a large scale. Here, computer intelligence algorithms take the role that operators have in Traditional Travel Surveys; since we train each algorithm on data, performances rest on the data quality, thus on the ground truth. Inaccurate validations affect negatively: labels, algorithms' training, travel diaries precision, and therefore data validation, within a very critical loop. Interestingly, boundaries are proven burdensome to push even for Machine Learning methods. To support optimal investment decisions for practitioners, we expose the drivers they should consider when assessing what they need against what they get. This paper highlights and examines the critical aspects of the underlying research and provides some recommendations: (i) from the device perspective, on the main physical limitations; (ii) from the application perspective, the methodological framework deployed for the automatic generation of travel diaries; (iii)from the ground truth perspective, the relationship between user interaction, methods, and data.


  Access Paper or Ask Questions

Conversion Rate Prediction via Post-Click Behaviour Modeling

Oct 15, 2019
Hong Wen, Jing Zhang, Yuan Wang, Wentian Bao, Quan Lin, Keping Yang

Effective and efficient recommendation is crucial for modern e-commerce platforms. It consists of two indispensable components named Click-Through Rate (CTR) prediction and Conversion Rate (CVR) prediction, where the latter is an essential factor contributing to the final purchasing volume. Existing methods specifically predict CVR using the clicked and purchased samples, which has limited performance affected by the well-known sample selection bias and data sparsity issues. To address these issues, we propose a novel deep CVR prediction method by considering the post-click behaviors. After grouping deterministic actions together, we construct a novel sequential path, which elaborately depicts the post-click behaviors of users. Based on the path, we define the CVR and several related probabilities including CTR, etc., and devise a deep neural network with multiple targets involved accordingly. It takes advantage of the abundant samples with deterministic labels derived from the post-click actions, leading to a significant improvement of CVR prediction. Extensive experiments on both offline and online settings demonstrate its superiority over representative state-of-the-art methods.

* 11 pages, 7 figures, 8 tables 

  Access Paper or Ask Questions

Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories

Sep 19, 2019
Jan-Nico Zaech, Cong Gao, Bastian Bier, Russell Taylor, Andreas Maier, Nassir Navab, Mathias Unberath

Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal implants, inhibiting widespread adoption of 3D cone-beam CT (CBCT) despite clear opportunity for intra-operative verification of implant positioning, e.g. in spinal fusion surgery. On synthetic and real data, we demonstrate that much of the artifact can be avoided by acquiring better data for reconstruction in a task-aware and patient-specific manner, and describe the first step towards the envisioned task-aware CBCT protocol. The traditional short-scan CBCT trajectory is planar, with little room for scene-specific adjustment. We extend this trajectory by autonomously adjusting out-of-plane angulation. This enables C-arm source trajectories that are scene-specific in that they avoid acquiring "poor images", characterized by beam hardening, photon starvation, and noise. The recommendation of ideal out-of-plane angulation is performed on-the-fly using a deep convolutional neural network that regresses a detectability-rank derived from imaging physics.

* Accepted for oral presentation at the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2019 

  Access Paper or Ask Questions

Blocking Bandits

Jul 27, 2019
Soumya Basu, Rajat Sen, Sujay Sanghavi, Sanjay Shakkottai

We consider a novel stochastic multi-armed bandit setting, where playing an arm makes it unavailable for a fixed number of time slots thereafter. This models situations where reusing an arm too often is undesirable (e.g. making the same product recommendation repeatedly) or infeasible (e.g. compute job scheduling on machines). We show that with prior knowledge of the rewards and delays of all the arms, the problem of optimizing cumulative reward does not admit any pseudo-polynomial time algorithm (in the number of arms) unless randomized exponential time hypothesis is false, by mapping to the PINWHEEL scheduling problem. Subsequently, we show that a simple greedy algorithm that plays the available arm with the highest reward is asymptotically $(1-1/e)$ optimal. When the rewards are unknown, we design a UCB based algorithm which is shown to have $c \log T + o(\log T)$ cumulative regret against the greedy algorithm, leveraging the free exploration of arms due to the unavailability. Finally, when all the delays are equal the problem reduces to Combinatorial Semi-bandits providing us with a lower bound of $c' \log T+ \omega(\log T)$.


  Access Paper or Ask Questions

One Bit Matters: Understanding Adversarial Examples as the Abuse of Redundancy

Oct 23, 2018
Jingkang Wang, Ruoxi Jia, Gerald Friedland, Bo Li, Costas Spanos

Despite the great success achieved in machine learning (ML), adversarial examples have caused concerns with regards to its trustworthiness: A small perturbation of an input results in an arbitrary failure of an otherwise seemingly well-trained ML model. While studies are being conducted to discover the intrinsic properties of adversarial examples, such as their transferability and universality, there is insufficient theoretic analysis to help understand the phenomenon in a way that can influence the design process of ML experiments. In this paper, we deduce an information-theoretic model which explains adversarial attacks as the abuse of feature redundancies in ML algorithms. We prove that feature redundancy is a necessary condition for the existence of adversarial examples. Our model helps to explain some major questions raised in many anecdotal studies on adversarial examples. Our theory is backed up by empirical measurements of the information content of benign and adversarial examples on both image and text datasets. Our measurements show that typical adversarial examples introduce just enough redundancy to overflow the decision making of an ML model trained on corresponding benign examples. We conclude with actionable recommendations to improve the robustness of machine learners against adversarial examples.


  Access Paper or Ask Questions

RECS: Robust Graph Embedding Using Connection Subgraphs

Sep 05, 2018
Saba A. Al-Sayouri, Danai Koutra, Evangelos E. Papalexakis, Sarah S. Lam

The success of graph embeddings or node representation learning in a variety of downstream tasks, such as node classification, link prediction, and recommendation systems, has led to their popularity in recent years. Representation learning algorithms aim to preserve local and global network structure by identifying node neighborhood notions. However, many existing algorithms generate embeddings that fail to properly preserve the network structure, or lead to unstable representations due to random processes (e.g., random walks to generate context) and, thus, cannot generate to multi-graph problems. In this paper, we propose RECS, a novel, stable graph embedding algorithmic framework. RECS learns graph representations using connection subgraphs by employing the analogy of graphs with electrical circuits. It preserves both local and global connectivity patterns, and addresses the issue of high-degree nodes. Further, it exploits the strength of weak ties and meta-data that have been neglected by baselines. The experiments show that RECS outperforms state-of-the-art algorithms by up to 36.85% on multi-label classification problem. Further, in contrast to baselines, RECS, being deterministic, is completely stable.


  Access Paper or Ask Questions

A Boosting Framework of Factorization Machine

Apr 17, 2018
Longfei Li, Peilin Zhao, Jun Zhou, Xiaolong Li

Recently, Factorization Machines (FM) has become more and more popular for recommendation systems, due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions is learnt as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank can help improve the generalization ability of Factorization Machines. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machines (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will adaptively gradually increases its rank according to its performance until the performance does not grow, using boosting strategy. To verify the performance of our proposed framework, we conduct an extensive set of experiments on many real-world datasets. Encouraging empirical results shows that the proposed algorithms are generally more effective than state-of-the-art other Factorization Machines.


  Access Paper or Ask Questions

A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications

Feb 02, 2018
Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang

Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximally preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.

* A 20-page comprehensive survey of graph/network embedding for over 150+ papers till year 2018. It provides systematic categorization of problems, techniques and applications. Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE). Comments and suggestions are welcomed for continuously improving this survey 

  Access Paper or Ask Questions

<<
353
354
355
356
357
358
359
360
361
362
363
364
365
>>