Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Recommending Research Papers to Chemists: A Specialized Interface for Chemical Entity Exploration

May 11, 2022
Corinna Breitinger, Kay Herklotz, Tim Flegelskamp, Norman Meuschke

Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.

* Author's preprint version. Final publication to appear in Proceedings of ACM/IEEE Joint Conference on Digital Libraries (JCDL'22) 

  Access Paper or Ask Questions

Joint Optimization of Tree-based Index and Deep Model for Recommender Systems

Feb 19, 2019
Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, Kun Gai

Large-scale industrial recommender systems are usually confronted with computational problems due to the enormous corpus size. To retrieve and recommend the most relevant items to users under response time limits, resorting to an efficient index structure is an effective and practical solution. Tree-based Deep Model (TDM) for recommendation \cite{zhu2018learning} greatly improves recommendation accuracy using tree index. By indexing items in a tree hierarchy and training a user-node preference prediction model satisfying a max-heap like property in the tree, TDM provides logarithmic computational complexity w.r.t. the corpus size, enabling the use of arbitrary advanced models in candidate retrieval and recommendation. In tree-based recommendation methods, the quality of both the tree index and the trained user preference prediction model determines the recommendation accuracy for the most part. We argue that the learning of tree index and user preference model has interdependence. Our purpose, in this paper, is to develop a method to jointly learn the index structure and user preference prediction model. In our proposed joint optimization framework, the learning of index and user preference prediction model are carried out under a unified performance measure. Besides, we come up with a novel hierarchical user preference representation utilizing the tree index hierarchy. Experimental evaluations with two large-scale real-world datasets show that the proposed method improves recommendation accuracy significantly. Online A/B test results at Taobao display advertising also demonstrate the effectiveness of the proposed method in production environments.

  Access Paper or Ask Questions

Determinantal Point Process Likelihoods for Sequential Recommendation

Apr 25, 2022
Yuli Liu, Christian Walder, Lexing Xie

Sequential recommendation is a popular task in academic research and close to real-world application scenarios, where the goal is to predict the next action(s) of the user based on his/her previous sequence of actions. In the training process of recommender systems, the loss function plays an essential role in guiding the optimization of recommendation models to generate accurate suggestions for users. However, most existing sequential recommendation techniques focus on designing algorithms or neural network architectures, and few efforts have been made to tailor loss functions that fit naturally into the practical application scenario of sequential recommender systems. Ranking-based losses, such as cross-entropy and Bayesian Personalized Ranking (BPR) are widely used in the sequential recommendation area. We argue that such objective functions suffer from two inherent drawbacks: i) the dependencies among elements of a sequence are overlooked in these loss formulations; ii) instead of balancing accuracy (quality) and diversity, only generating accurate results has been over emphasized. We therefore propose two new loss functions based on the Determinantal Point Process (DPP) likelihood, that can be adaptively applied to estimate the subsequent item or items. The DPP-distributed item set captures natural dependencies among temporal actions, and a quality vs. diversity decomposition of the DPP kernel pushes us to go beyond accuracy-oriented loss functions. Experimental results using the proposed loss functions on three real-world datasets show marked improvements over state-of-the-art sequential recommendation methods in both quality and diversity metrics.

* accepted at ACM SIGIR 2022 

  Access Paper or Ask Questions

GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation

Dec 03, 2021
Desheng Cai, Jun Hu, Quan Zhao, Shengsheng Qian, Quan Fang, Changsheng Xu

In this paper, we present GRecX, an open-source TensorFlow framework for benchmarking GNN-based recommendation models in an efficient and unified way. GRecX consists of core libraries for building GNN-based recommendation benchmarks, as well as the implementations of popular GNN-based recommendation models. The core libraries provide essential components for building efficient and unified benchmarks, including FastMetrics (efficient metrics computation libraries), VectorSearch (efficient similarity search libraries for dense vectors), BatchEval (efficient mini-batch evaluation libraries), and DataManager (unified dataset management libraries). Especially, to provide a unified benchmark for the fair comparison of different complex GNN-based recommendation models, we design a new metric GRMF-X and integrate it into the FastMetrics component. Based on a TensorFlow GNN library tf_geometric, GRecX carefully implements a variety of popular GNN-based recommendation models. We carefully implement these baseline models to reproduce the performance reported in the literature, and our implementations are usually more efficient and friendly. In conclusion, GRecX enables uses to train and benchmark GNN-based recommendation baselines in an efficient and unified way. We conduct experiments with GRecX, and the experimental results show that GRecX allows us to train and benchmark GNN-based recommendation baselines in an efficient and unified way. The source code of GRecX is available at

  Access Paper or Ask Questions

A Review-aware Graph Contrastive Learning Framework for Recommendation

May 04, 2022
Jie Shuai, Kun Zhang, Le Wu, Peijie Sun, Richang Hong, Meng Wang, Yong Li

Most modern recommender systems predict users preferences with two components: user and item embedding learning, followed by the user-item interaction modeling. By utilizing the auxiliary review information accompanied with user ratings, many of the existing review-based recommendation models enriched user/item embedding learning ability with historical reviews or better modeled user-item interactions with the help of available user-item target reviews. Though significant progress has been made, we argue that current solutions for review-based recommendation suffer from two drawbacks. First, as review-based recommendation can be naturally formed as a user-item bipartite graph with edge features from corresponding user-item reviews, how to better exploit this unique graph structure for recommendation? Second, while most current models suffer from limited user behaviors, can we exploit the unique self-supervised signals in the review-aware graph to guide two recommendation components better? To this end, in this paper, we propose a novel Review-aware Graph Contrastive Learning (RGCL) framework for review-based recommendation. Specifically, we first construct a review-aware user-item graph with feature-enhanced edges from reviews, where each edge feature is composed of both the user-item rating and the corresponding review semantics. This graph with feature-enhanced edges can help attentively learn each neighbor node weight for user and item representation learning. After that, we design two additional contrastive learning tasks (i.e., Node Discrimination and Edge Discrimination) to provide self-supervised signals for the two components in recommendation process. Finally, extensive experiments over five benchmark datasets demonstrate the superiority of our proposed RGCL compared to the state-of-the-art baselines.

* Accepted by SIGIR 2022 

  Access Paper or Ask Questions

FedAttack: Effective and Covert Poisoning Attack on Federated Recommendation via Hard Sampling

Feb 10, 2022
Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, Xing Xie

Federated learning (FL) is a feasible technique to learn personalized recommendation models from decentralized user data. Unfortunately, federated recommender systems are vulnerable to poisoning attacks by malicious clients. Existing recommender system poisoning methods mainly focus on promoting the recommendation chances of target items due to financial incentives. In fact, in real-world scenarios, the attacker may also attempt to degrade the overall performance of recommender systems. However, existing general FL poisoning methods for degrading model performance are either ineffective or not concealed in poisoning federated recommender systems. In this paper, we propose a simple yet effective and covert poisoning attack method on federated recommendation, named FedAttack. Its core idea is using globally hardest samples to subvert model training. More specifically, the malicious clients first infer user embeddings based on local user profiles. Next, they choose the candidate items that are most relevant to the user embeddings as hardest negative samples, and find the candidates farthest from the user embeddings as hardest positive samples. The model gradients inferred from these poisoned samples are then uploaded to the server for aggregation and model update. Since the behaviors of malicious clients are somewhat similar to users with diverse interests, they cannot be effectively distinguished from normal clients by the server. Extensive experiments on two benchmark datasets show that FedAttack can effectively degrade the performance of various federated recommender systems, meanwhile cannot be effectively detected nor defended by many existing methods.

* Submitted to KDD 2022 

  Access Paper or Ask Questions

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Jun 12, 2019
Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard de Melo, Yongfeng Zhang

Recent advances in personalized recommendation have sparked great interest in the exploitation of rich structured information provided by knowledge graphs. Unlike most existing approaches that only focus on leveraging knowledge graphs for more accurate recommendation, we perform explicit reasoning with knowledge for decision making so that the recommendations are generated and supported by an interpretable causal inference procedure. To this end, we propose a method called Policy-Guided Path Reasoning (PGPR), which couples recommendation and interpretability by providing actual paths in a knowledge graph. Our contributions include four aspects. We first highlight the significance of incorporating knowledge graphs into recommendation to formally define and interpret the reasoning process. Second, we propose a reinforcement learning (RL) approach featuring an innovative soft reward strategy, user-conditional action pruning and a multi-hop scoring function. Third, we design a policy-guided graph search algorithm to efficiently and effectively sample reasoning paths for recommendation. Finally, we extensively evaluate our method on several large-scale real-world benchmark datasets, obtaining favorable results compared with state-of-the-art methods.

* Accepted in SIGIR 2019 

  Access Paper or Ask Questions

Position Paper on Simulating Privacy Dynamics in Recommender Systems

Sep 14, 2021
Peter Müllner, Elisabeth Lex, Dominik Kowald

In this position paper, we discuss the merits of simulating privacy dynamics in recommender systems. We study this issue at hand from two perspectives: Firstly, we present a conceptual approach to integrate privacy into recommender system simulations, whose key elements are privacy agents. These agents can enhance users' profiles with different privacy preferences, e.g., their inclination to disclose data to the recommender system. Plus, they can protect users' privacy by guarding all actions that could be a threat to privacy. For example, agents can prohibit a user's privacy-threatening actions or apply privacy-enhancing techniques, e.g., Differential Privacy, to make actions less threatening. Secondly, we identify three critical topics for future research in privacy-aware recommender system simulations: (i) How could we model users' privacy preferences and protect users from performing any privacy-threatening actions? (ii) To what extent do privacy agents modify the users' document preferences? (iii) How do privacy preferences and privacy protections impact recommendations and privacy of others? Our conceptual privacy-aware simulation approach makes it possible to investigate the impact of privacy preferences and privacy protection on the micro-level, i.e., a single user, but also on the macro-level, i.e., all recommender system users. With this work, we hope to present perspectives on how privacy-aware simulations could be realized, such that they enable researchers to study the dynamics of privacy within a recommender system.

* Accepted to the Workshop on Simulation Methods for Recommender Systems at ACM RecSys 2021 

  Access Paper or Ask Questions