Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

PsychFM: Predicting your next gamble

Jul 03, 2020
Prakash Rajan, Krishna P. Miyapuram

There is a sudden surge to model human behavior due to its vast and diverse applications which includes modeling public policies, economic behavior and consumer behavior. Most of the human behavior itself can be modeled into a choice prediction problem. Prospect theory is a theoretical model that tries to explain the anomalies in choice prediction. These theories perform well in terms of explaining the anomalies but they lack precision. Since the behavior is person dependent, there is a need to build a model that predicts choices on a per-person basis. Looking on at the average persons choice may not necessarily throw light on a particular person's choice. Modeling the gambling problem on a per person basis will help in recommendation systems and related areas. A novel hybrid model namely psychological factorisation machine ( PsychFM ) has been proposed that involves concepts from machine learning as well as psychological theories. It outperforms the popular existing models namely random forest and factorisation machines for the benchmark dataset CPC-18. Finally,the efficacy of the proposed hybrid model has been verified by comparing with the existing models.

* To be published in International Joint Conference on Neural Networks (IJCNN) 2020 conference 

  Access Paper or Ask Questions

DisCoveR: Accurate & Efficient Discovery of Declarative Process Models

May 20, 2020
Christoffer Olling Back, Tijs Slaats, Thomas Troels Hildebrandt, Morten Marquard

Declarative process modeling formalisms - which capture high-level process constraints - have seen growing interest, especially for modeling flexible processes. This paper presents DisCoveR, an extremely efficient and accurate declarative miner for learning Dynamic Condition Response (DCR) Graphs from event logs. We precisely formalize the algorithm, describe a highly efficient bit vector implementation and rigorously evaluate performance against two other declarative miners, representing the state-of-the-art in Declare and DCR Graphs mining. DisCoveR outperforms each of these w.r.t. a binary classification task, achieving an average accuracy of 96.2% in the Process Discovery Contest 2019. Due to its linear time complexity, DisCoveR also achieves run-times 1-2 orders of magnitude below its declarative counterparts. Finally, we show how the miner has been integrated in a state-of-the-art declarative process modeling framework as a model recommendation tool, discuss how discovery can play an integral part of the modeling task and report on how the integration has improved the modeling experience of end-users.

* Author's original version 

  Access Paper or Ask Questions

Context-Aware Parse Trees

Mar 24, 2020
Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marcus, Paul Petersen, Jesmin Jahan Tithi, Tim Mattson, Tim Kraska, Pradeep Dubey, Vivek Sarkar, Justin Gottschlich

The simplified parse tree (SPT) presented in Aroma, a state-of-the-art code recommendation system, is a tree-structured representation used to infer code semantics by capturing program \emph{structure} rather than program \emph{syntax}. This is a departure from the classical abstract syntax tree, which is principally driven by programming language syntax. While we believe a semantics-driven representation is desirable, the specifics of an SPT's construction can impact its performance. We analyze these nuances and present a new tree structure, heavily influenced by Aroma's SPT, called a \emph{context-aware parse tree} (CAPT). CAPT enhances SPT by providing a richer level of semantic representation. Specifically, CAPT provides additional binding support for language-specific techniques for adding semantically-salient features, and language-agnostic techniques for removing syntactically-present but semantically-irrelevant features. Our research quantitatively demonstrates the value of our proposed semantically-salient features, enabling a specific CAPT configuration to be 39\% more accurate than SPT across the 48,610 programs we analyzed.

  Access Paper or Ask Questions

I Know Where You Are Coming From: On the Impact of Social Media Sources on AI Model Performance

Feb 05, 2020
Qi Yang, Aleksandr Farseev, Andrey Filchenkov

Nowadays, social networks play a crucial role in human everyday life and no longer purely associated with spare time spending. In fact, instant communication with friends and colleagues has become an essential component of our daily interaction giving a raise of multiple new social network types emergence. By participating in such networks, individuals generate a multitude of data points that describe their activities from different perspectives and, for example, can be further used for applications such as personalized recommendation or user profiling. However, the impact of the different social media networks on machine learning model performance has not been studied comprehensively yet. Particularly, the literature on modeling multi-modal data from multiple social networks is relatively sparse, which had inspired us to take a deeper dive into the topic in this preliminary study. Specifically, in this work, we will study the performance of different machine learning models when being learned on multi-modal data from different social networks. Our initial experimental results reveal that social network choice impacts the performance and the proper selection of data source is crucial.

* AAAI-20 

  Access Paper or Ask Questions

A Deep Learning Approach to Behavior-Based Learner Modeling

Jan 23, 2020
Yuwei Tu, Weiyu Chen, Christopher G. Brinton

The increasing popularity of e-learning has created demand for improving online education through techniques such as predictive analytics and content recommendations. In this paper, we study learner outcome predictions, i.e., predictions of how they will perform at the end of a course. We propose a novel Two Branch Decision Network for performance prediction that incorporates two important factors: how learners progress through the course and how the content progresses through the course. We combine clickstream features which log every action the learner takes while learning, and textual features which are generated through pre-trained GloVe word embeddings. To assess the performance of our proposed network, we collect data from a short online course designed for corporate training and evaluate both neural network and non-neural network based algorithms on it. Our proposed algorithm achieves 95.7% accuracy and 0.958 AUC score, which outperforms all other models. The results also indicate the combination of behavior features and text features are more predictive than behavior features only and neural network models are powerful in capturing the joint relationship between user behavior and course content.

  Access Paper or Ask Questions

Deep Time-Stream Framework for Click-Through Rate Prediction by Tracking Interest Evolution

Jan 08, 2020
Shu-Ting Shi, Wenhao Zheng, Jun Tang, Qing-Guo Chen, Yao Hu, Jianke Zhu, Ming Li

Click-through rate (CTR) prediction is an essential task in industrial applications such as video recommendation. Recently, deep learning models have been proposed to learn the representation of users' overall interests, while ignoring the fact that interests may dynamically change over time. We argue that it is necessary to consider the continuous-time information in CTR models to track user interest trend from rich historical behaviors. In this paper, we propose a novel Deep Time-Stream framework (DTS) which introduces the time information by an ordinary differential equations (ODE). DTS continuously models the evolution of interests using a neural network, and thus is able to tackle the challenge of dynamically representing users' interests based on their historical behaviors. In addition, our framework can be seamlessly applied to any existing deep CTR models by leveraging the additional Time-Stream Module, while no changes are made to the original CTR models. Experiments on public dataset as well as real industry dataset with billions of samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with existing methods.

* AAAI 2020 
* 8 pages. arXiv admin note: text overlap with arXiv:1809.03672 by other authors 

  Access Paper or Ask Questions

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

Aug 07, 2019
Yolanda Gil, Bart Selman

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

* A Computing Community Consortium (CCC) workshop report, 109 pages 

  Access Paper or Ask Questions

Prediction of Soil Moisture Content Based On Satellite Data and Sequence-to-Sequence Networks

Jun 05, 2019
Natalia Efremova, Dmitry Zausaev, Gleb Antipov

The main objective of this study is to combine remote sensing and machine learning to detect soil moisture content. Growing population and food consumption has led to the need to improve agricultural yield and to reduce wastage of natural resources. In this paper, we propose a neural network architecture, based on recent work by the research community, that can make a strong social impact and aid United Nations Sustainable Development Goal of Zero Hunger. The main aims here are to: improve efficiency of water usage; reduce dependence on irrigation; increase overall crop yield; minimise risk of crop loss due to drought and extreme weather conditions. We achieve this by applying satellite imagery, crop segmentation, soil classification and NDVI and soil moisture prediction on satellite data, ground truth and climate data records. By applying machine learning to sensor data and ground data, farm management systems can evolve into a real time AI enabled platform that can provide actionable recommendations and decision support tools to the farmers.

* Presented on NeurIPS 2018 WiML workshop 

  Access Paper or Ask Questions

Bayesian Optimization for Policy Search via Online-Offline Experimentation

Apr 29, 2019
Benjamin Letham, Eytan Bakshy

Online field experiments are the gold-standard way of evaluating changes to real-world interactive machine learning systems. Yet our ability to explore complex, multi-dimensional policy spaces - such as those found in recommendation and ranking problems - is often constrained by the limited number of experiments that can be run simultaneously. To alleviate these constraints, we augment online experiments with an offline simulator and apply multi-task Bayesian optimization to tune live machine learning systems. We describe practical issues that arise in these types of applications, including biases that arise from using a simulator and assumptions for the multi-task kernel. We measure empirical learning curves which show substantial gains from including data from biased offline experiments, and show how these learning curves are consistent with theoretical results for multi-task Gaussian process generalization. We find that improved kernel inference is a significant driver of multi-task generalization. Finally, we show several examples of Bayesian optimization efficiently tuning a live machine learning system by combining offline and online experiments.

  Access Paper or Ask Questions