Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Extracting Hierarchies of Search Tasks & Subtasks via a Bayesian Nonparametric Approach

Jun 07, 2017
Rishabh Mehrotra, Emine Yilmaz

A significant amount of search queries originate from some real world information need or tasks. In order to improve the search experience of the end users, it is important to have accurate representations of tasks. As a result, significant amount of research has been devoted to extracting proper representations of tasks in order to enable search systems to help users complete their tasks, as well as providing the end user with better query suggestions, for better recommendations, for satisfaction prediction, and for improved personalization in terms of tasks. Most existing task extraction methodologies focus on representing tasks as flat structures. However, tasks often tend to have multiple subtasks associated with them and a more naturalistic representation of tasks would be in terms of a hierarchy, where each task can be composed of multiple (sub)tasks. To this end, we propose an efficient Bayesian nonparametric model for extracting hierarchies of such tasks \& subtasks. We evaluate our method based on real world query log data both through quantitative and crowdsourced experiments and highlight the importance of considering task/subtask hierarchies.

* 10 pages. Accepted at SIGIR 2017 as a full paper 

  Access Paper or Ask Questions

Twitter-Network Topic Model: A Full Bayesian Treatment for Social Network and Text Modeling

Sep 22, 2016
Kar Wai Lim, Changyou Chen, Wray Buntine

Twitter data is extremely noisy -- each tweet is short, unstructured and with informal language, a challenge for current topic modeling. On the other hand, tweets are accompanied by extra information such as authorship, hashtags and the user-follower network. Exploiting this additional information, we propose the Twitter-Network (TN) topic model to jointly model the text and the social network in a full Bayesian nonparametric way. The TN topic model employs the hierarchical Poisson-Dirichlet processes (PDP) for text modeling and a Gaussian process random function model for social network modeling. We show that the TN topic model significantly outperforms several existing nonparametric models due to its flexibility. Moreover, the TN topic model enables additional informative inference such as authors' interests, hashtag analysis, as well as leading to further applications such as author recommendation, automatic topic labeling and hashtag suggestion. Note our general inference framework can readily be applied to other topic models with embedded PDP nodes.

* NIPS 2013 Topic Models: Computation, Application, and Evaluation, pp. 1-5. Google Sites. 2013 
* NIPS workshop paper 

  Access Paper or Ask Questions

Learning List-wise Representation in Reinforcement Learning for Ads Allocation with Multiple Auxiliary Tasks

Apr 02, 2022
Guogang Liao, Ze Wang, Xiaowen Shi, Xiaoxu Wu, Chuheng Zhang, Yongkang Wang, Xingxing Wang, Dong Wang

With the recent prevalence of reinforcement learning (RL), there have been tremendous interests in utilizing RL for ads allocation in recommendation platforms (e.g., e-commerce and news feed sites). For better performance, recent RL-based ads allocation agent makes decisions based on representations of list-wise item arrangement. This results in a high-dimensional state-action space, which makes it difficult to learn an efficient and generalizable list-wise representation. To address this problem, we propose a novel algorithm to learn a better representation by leveraging task-specific signals on Meituan food delivery platform. Specifically, we propose three different types of auxiliary tasks that are based on reconstruction, prediction, and contrastive learning respectively. We conduct extensive offline experiments on the effectiveness of these auxiliary tasks and test our method on real-world food delivery platform. The experimental results show that our method can learn better list-wise representations and achieve higher revenue for the platform.

* arXiv admin note: text overlap with arXiv:2109.04353, arXiv:2204.00377 

  Access Paper or Ask Questions

The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and Algorithm Selection

Apr 19, 2021
Anja Jankovic, Gorjan Popovski, Tome Eftimov, Carola Doerr

Automated algorithm selection and configuration methods that build on exploratory landscape analysis (ELA) are becoming very popular in Evolutionary Computation. However, despite a significantly growing number of applications, the underlying machine learning models are often chosen in an ad-hoc manner. We show in this work that three classical regression methods are able to achieve meaningful results for ELA-based algorithm selection. For those three models -- random forests, decision trees, and bagging decision trees -- the quality of the regression models is highly impacted by the chosen hyper-parameters. This has significant effects also on the quality of the algorithm selectors that are built on top of these regressions. By comparing a total number of 30 different models, each coupled with 2 complementary regression strategies, we derive guidelines for the tuning of the regression models and provide general recommendations for a more systematic use of classical machine learning models in landscape-aware algorithm selection. We point out that a choice of the machine learning model merits to be carefully undertaken and further investigated.

* To appear in the Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2021), ACM 

  Access Paper or Ask Questions

Ensemble deep learning: A review

Apr 06, 2021
M. A. Ganaie, Minghui Hu, M. Tanveer*, P. N. Suganthan*

Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions.

  Access Paper or Ask Questions

ReadNet: A Hierarchical Transformer Framework for Web Article Readability Analysis

Mar 06, 2021
Changping Meng, Muhao Chen, Jie Mao, Jennifer Neville

Analyzing the readability of articles has been an important sociolinguistic task. Addressing this task is necessary to the automatic recommendation of appropriate articles to readers with different comprehension abilities, and it further benefits education systems, web information systems, and digital libraries. Current methods for assessing readability employ empirical measures or statistical learning techniques that are limited by their ability to characterize complex patterns such as article structures and semantic meanings of sentences. In this paper, we propose a new and comprehensive framework which uses a hierarchical self-attention model to analyze document readability. In this model, measurements of sentence-level difficulty are captured along with the semantic meanings of each sentence. Additionally, the sentence-level features are incorporated to characterize the overall readability of an article with consideration of article structures. We evaluate our proposed approach on three widely-used benchmark datasets against several strong baseline approaches. Experimental results show that our proposed method achieves the state-of-the-art performance on estimating the readability for various web articles and literature.

* ECIR 2020 

  Access Paper or Ask Questions

Making Responsible AI the Norm rather than the Exception

Jan 31, 2021
Abhishek Gupta

This report prepared by the Montreal AI Ethics Institute provides recommendations in response to the National Security Commission on Artificial Intelligence (NSCAI) Key Considerations for Responsible Development and Fielding of Artificial Intelligence document. The report centres on the idea that Responsible AI should be made the Norm rather than an Exception. It does so by utilizing the guiding principles of: (1) alleviating friction in existing workflows, (2) empowering stakeholders to get buy-in, and (3) conducting an effective translation of abstract standards into actionable engineering practices. After providing some overarching comments on the document from the NSCAI, the report dives into the primary contribution of an actionable framework to help operationalize the ideas presented in the document from the NSCAI. The framework consists of: (1) a learning, knowledge, and information exchange (LKIE), (2) the Three Ways of Responsible AI, (3) an empirically-driven risk-prioritization matrix, and (4) achieving the right level of complexity. All components reinforce each other to move from principles to practice in service of making Responsible AI the norm rather than the exception.

* A report prepared by the Montreal AI Ethics Institute for the National Security Commission on Artificial Intelligence in response to their Key Considerations for Responsible Development and Fielding of Artificial Intelligence document; 26 pages 

  Access Paper or Ask Questions

Cross-Document Language Modeling

Jan 02, 2021
Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E. Peters, Arie Cattan, Ido Dagan

We introduce a new pretraining approach for language models that are geared to support multi-document NLP tasks. Our cross-document language model (CD-LM) improves masked language modeling for these tasks with two key ideas. First, we pretrain with multiple related documents in a single input, via cross-document masking, which encourages the model to learn cross-document and long-range relationships. Second, extending the recent Longformer model, we pretrain with long contexts of several thousand tokens and introduce a new attention pattern that uses sequence-level global attention to predict masked tokens, while retaining the familiar local attention elsewhere. We show that our CD-LM sets new state-of-the-art results for several multi-text tasks, including cross-document event and entity coreference resolution, paper citation recommendation, and documents plagiarism detection, while using a significantly reduced number of training parameters relative to prior works.

  Access Paper or Ask Questions

Automated Detection of Cyberbullying Against Women and Immigrants and Cross-domain Adaptability

Dec 04, 2020
Thushari Atapattu, Mahen Herath, Georgia Zhang, Katrina Falkner

Cyberbullying is a prevalent and growing social problem due to the surge of social media technology usage. Minorities, women, and adolescents are among the common victims of cyberbullying. Despite the advancement of NLP technologies, the automated cyberbullying detection remains challenging. This paper focuses on advancing the technology using state-of-the-art NLP techniques. We use a Twitter dataset from SemEval 2019 - Task 5(HatEval) on hate speech against women and immigrants. Our best performing ensemble model based on DistilBERT has achieved 0.73 and 0.74 of F1 score in the task of classifying hate speech (Task A) and aggressiveness and target (Task B) respectively. We adapt the ensemble model developed for Task A to classify offensive language in external datasets and achieved ~0.7 of F1 score using three benchmark datasets, enabling promising results for cross-domain adaptability. We conduct a qualitative analysis of misclassified tweets to provide insightful recommendations for future cyberbullying research.

  Access Paper or Ask Questions