We present a demonstration of REACT, a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators. REACT is a data-driven tool with a user-friendly graphical interface. It analyzes students' performance data and provides context-based alerts as well as recommendations to educators for course planning. Furthermore, it incorporates model-agnostic explanations for bringing explainability and interpretability in the process of decision making. This paper demonstrates a use case scenario of our proposed tool using a real-world dataset and presents the design of its architecture and user interface. This demonstration focuses on the agglomerative clustering of students based on their performance (i.e., incorrect responses and hints used) during an in-class activity. This formation of clusters of students with similar strengths and weaknesses may help educators to improve their course planning by identifying at-risk students, forming study groups, or encouraging tutoring between students of different strengths.
Evaluating robustness of machine-learning models to adversarial examples is a challenging problem. Many defenses have been shown to provide a false sense of security by causing gradient-based attacks to fail, and they have been broken under more rigorous evaluations. Although guidelines and best practices have been suggested to improve current adversarial robustness evaluations, the lack of automatic testing and debugging tools makes it difficult to apply these recommendations in a systematic manner. In this work, we overcome these limitations by (i) defining a set of quantitative indicators which unveil common failures in the optimization of gradient-based attacks, and (ii) proposing specific mitigation strategies within a systematic evaluation protocol. Our extensive experimental analysis shows that the proposed indicators of failure can be used to visualize, debug and improve current adversarial robustness evaluations, providing a first concrete step towards automatizing and systematizing current adversarial robustness evaluations. Our open-source code is available at: https://github.com/pralab/IndicatorsOfAttackFailure.
In recent years, neural networks showed unprecedented growth that ultimately influenced dozens of different industries, including signal processing for the electroencephalography (EEG) process. Electroencephalography, although it appeared in the first half of the 20th century, was not changed the physical principles of work to this day. But signal processing technology made significant progress in this area through the use of neural networks. But many different models of neural networks complicate the process of understanding the real situation in this area. This manuscript summarizes the current state of knowledge on this topic, summarizes and describes the most significant achievements in various fields of application of neural networks for processing EEG signals. We discussed in detail the results presented in recent research papers for various fields in which EEG signals have been involved. We also examined in detail the process of extracting features from EEG signals using neural networks. In conclusion, we have provided recommendations for the correct demonstration of research results in manuscripts on the subject of neural networks and EEG.
In this paper, we investigate how to design an effective interface for remote multi-human multi-robot interaction. While significant research exists on interfaces for individual human operators, little research exists for the multi-human case. Yet, this is a critical problem to solve to make complex, large-scale missions achievable in which direct human involvement is impossible or undesirable, and robot swarms act as a semi-autonomous agents. This paper's contribution is twofold. The first contribution is an exploration of the design space of computer-based interfaces for multi-human multi-robot operations. In particular, we focus on information transparency and on the factors that affect inter-human communication in ideal conditions, i.e., without communication issues. Our second contribution concerns the same problem, but considering increasing degrees of information loss, defined as intermittent reception of data with noticeable gaps between individual receipts. We derived a set of design recommendations based on two user studies involving 48 participants.
Current state-of-the-art approaches for named entity recognition (NER) using BERT-style transformers typically use one of two different approaches: (1) The first fine-tunes the transformer itself on the NER task and adds only a simple linear layer for word-level predictions. (2) The second uses the transformer only to provide features to a standard LSTM-CRF sequence labeling architecture and thus performs no fine-tuning. In this paper, we perform a comparative analysis of both approaches in a variety of settings currently considered in the literature. In particular, we evaluate how well they work when document-level features are leveraged. Our evaluation on the classic CoNLL benchmark datasets for 4 languages shows that document-level features significantly improve NER quality and that fine-tuning generally outperforms the feature-based approaches. We present recommendations for parameters as well as several new state-of-the-art numbers. Our approach is integrated into the Flair framework to facilitate reproduction of our experiments.
The annual number of publications at scientific venues, for example, conferences and journals, is growing quickly. Hence, even for researchers it becomes harder and harder to keep track of research topics and their progress. In this task, researchers can be supported by automated publication analysis. Yet, many such methods result in uninterpretable, purely numerical representations. As an attempt to support human analysts, we present \emph{topic space trajectories}, a structure that allows for the comprehensible tracking of research topics. We demonstrate how these trajectories can be interpreted based on eight different analysis approaches. To obtain comprehensible results, we employ non-negative matrix factorization as well as suitable visualization techniques. We show the applicability of our approach on a publication corpus spanning 50 years of machine learning research from 32 publication venues. Our novel analysis method may be employed for paper classification, for the prediction of future research topics, and for the recommendation of fitting conferences and journals for submitting unpublished work.
We study a multi-agent stochastic linear bandit with side information, parameterized by an unknown vector $\theta^* \in \mathbb{R}^d$. The side information consists of a finite collection of low-dimensional subspaces, one of which contains $\theta^*$. In our setting, agents can collaborate to reduce regret by sending recommendations across a communication graph connecting them. We present a novel decentralized algorithm, where agents communicate subspace indices with each other, and each agent plays a projected variant of LinUCB on the corresponding (low-dimensional) subspace. Through a combination of collaborative best subspace identification, and per-agent learning of an unknown vector in the corresponding low-dimensional subspace, we show that the per-agent regret is much smaller than the case when agents do not communicate. By collaborating to identify the subspace containing $\theta^*$, we show that each agent effectively solves an easier instance of the linear bandit (compared to the case of no collaboration), thus leading to the reduced per-agent regret. We finally complement these results through simulations.
Motivated by recommendation problems in music streaming platforms, we propose a nonstationary stochastic bandit model in which the expected reward of an arm depends on the number of rounds that have passed since the arm was last pulled. After proving that finding an optimal policy is NP-hard even when all model parameters are known, we introduce a class of ranking policies provably approximating, to within a constant factor, the expected reward of the optimal policy. We show an algorithm whose regret with respect to the best ranking policy is bounded by $\widetilde{\mathcal{O}}\big(\!\sqrt{kT}\big)$, where $k$ is the number of arms and $T$ is time. Our algorithm uses only $\mathcal{O}\big(k\ln\ln T\big)$ switches, which helps when switching between policies is costly. As constructing the class of learning policies requires ordering the arms according to their expectations, we also bound the number of pulls required to do so. Finally, we run experiments to compare our algorithm against UCB on different problem instances.
Visual localization is the problem of estimating a camera within a scene and a key component in computer vision applications such as self-driving cars and Mixed Reality. State-of-the-art approaches for accurate visual localization use scene-specific representations, resulting in the overhead of constructing these models when applying the techniques to new scenes. Recently, deep learning-based approaches based on relative pose estimation have been proposed, carrying the promise of easily adapting to new scenes. However, it has been shown such approaches are currently significantly less accurate than state-of-the-art approaches. In this paper, we are interested in analyzing this behavior. To this end, we propose a novel framework for visual localization from relative poses. Using a classical feature-based approach within this framework, we show state-of-the-art performance. Replacing the classical approach with learned alternatives at various levels, we then identify the reasons for why deep learned approaches do not perform well. Based on our analysis, we make recommendations for future work.