Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Rich-Item Recommendations for Rich-Users via GCNN: Exploiting Dynamic and Static Side Information

Jan 28, 2020
Amar Budhiraja, Gaurush Hiranandani, Navya Yarrabelly, Ayush Choure, Oluwasanmi Koyejo, Prateek Jain

We study the standard problem of recommending relevant items to users; a user is someone who seeks recommendation, and an item is something which should be recommended. In today's modern world, both users and items are 'rich' multi-faceted entities but existing literature, for ease of modeling, views these facets in silos. In this paper, we provide a general formulation of the recommendation problem that captures the complexities of modern systems and encompasses most of the existing recommendation system formulations. In our formulation, each user and item is modeled via a set of static entities and a dynamic component. The relationships between entities are captured by multiple weighted bipartite graphs. To effectively exploit these complex interactions for recommendations, we propose MEDRES -- a multiple graph-CNN based novel deep-learning architecture. In addition, we propose a new metric, [email protected], that is critical for a variety of classification+ranking scenarios. We also provide an optimization algorithm that directly optimizes the proposed metric and trains MEDRES in an end-to-end framework. We demonstrate the effectiveness of our method on two benchmarks as well as on a message recommendation system deployed in Microsoft Teams where it improves upon the existing production-grade model by 3%.

* The first two authors contributed equally. 14 pages, 2 figures and 5 tables 

  Access Paper or Ask Questions

Sequential recommendation with metric models based on frequent sequences

Aug 12, 2020
Corentin Lonjarret, Roch Auburtin, Céline Robardet, Marc Plantevit

Modeling user preferences (long-term history) and user dynamics (short-term history) is of greatest importance to build efficient sequential recommender systems. The challenge lies in the successful combination of the whole user's history and his recent actions (sequential dynamics) to provide personalized recommendations. Existing methods capture the sequential dynamics of a user using fixed-order Markov chains (usually first order chains) regardless of the user, which limits both the impact of the past of the user on the recommendation and the ability to adapt its length to the user profile. In this article, we propose to use frequent sequences to identify the most relevant part of the user history for the recommendation. The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics. Extensive experiments demonstrate that our method outperforms state-of-the-art, especially on sparse datasets. We show that considering sequences of varying lengths improves the recommendations and we also emphasize that these sequences provide explanations on the recommendation.

* 25 pages, 6 figures, submitted to DAMI (under review) 

  Access Paper or Ask Questions

Deep Unified Representation for Heterogeneous Recommendation

Jan 26, 2022
Chengqiang Lu, Mingyang Yin, Shuheng Shen, Luo Ji, Qi Liu, Hongxia Yang

Recommendation system has been a widely studied task both in academia and industry. Previous works mainly focus on homogeneous recommendation and little progress has been made for heterogeneous recommender systems. However, heterogeneous recommendations, e.g., recommending different types of items including products, videos, celebrity shopping notes, among many others, are dominant nowadays. State-of-the-art methods are incapable of leveraging attributes from different types of items and thus suffer from data sparsity problems. And it is indeed quite challenging to represent items with different feature spaces jointly. To tackle this problem, we propose a kernel-based neural network, namely deep unified representation (or DURation) for heterogeneous recommendation, to jointly model unified representations of heterogeneous items while preserving their original feature space topology structures. Theoretically, we prove the representation ability of the proposed model. Besides, we conduct extensive experiments on real-world datasets. Experimental results demonstrate that with the unified representation, our model achieves remarkable improvement (e.g., 4.1% ~ 34.9% lift by AUC score and 3.7% lift by online CTR) over existing state-of-the-art models.

* 12 pages, 4 figures, accepted by the ACM Web Conference 2022 (WWW '22) 

  Access Paper or Ask Questions

Near-optimal Individualized Treatment Recommendations

Apr 06, 2020
Haomiao Meng, Ying-Qi Zhao, Haoda Fu, Xingye Qiao

Individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal is to assign proper treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to an ITR problem can be formulated as a weighted classification problem to maximize the average benefit that patients receive from the recommended treatments. Several methods have been proposed for ITR in both binary and multicategory treatment setups. In practice, one may prefer a more flexible recommendation with multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. We show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. We also conduct simulation studies, and apply our methods to a real data set for Type 2 diabetic patients with injectable antidiabetic treatments. These numerical studies have shown the usefulness of the proposed A-ITR framework. We develop a R package aitr which can be found at https://github.com/menghaomiao/aitr.


  Access Paper or Ask Questions

Live Multi-Streaming and Donation Recommendations via Coupled Donation-Response Tensor Factorization

Oct 05, 2021
Hsu-Chao Lai, Jui-Yi Tsai, Hong-Han Shuai, Jiun-Long Huang, Wang-Chien Lee, De-Nian Yang

In contrast to traditional online videos, live multi-streaming supports real-time social interactions between multiple streamers and viewers, such as donations. However, donation and multi-streaming channel recommendations are challenging due to complicated streamer and viewer relations, asymmetric communications, and the tradeoff between personal interests and group interactions. In this paper, we introduce Multi-Stream Party (MSP) and formulate a new multi-streaming recommendation problem, called Donation and MSP Recommendation (DAMRec). We propose Multi-stream Party Recommender System (MARS) to extract latent features via socio-temporal coupled donation-response tensor factorization for donation and MSP recommendations. Experimental results on Twitch and Douyu manifest that MARS significantly outperforms existing recommenders by at least 38.8% in terms of hit ratio and mean average precision.

* Proceedings of the 29th ACM International Conference on Information & Knowledge Management 1 2020 665-674 

  Access Paper or Ask Questions

Deep Causal Reasoning for Recommendations

Jan 06, 2022
Yaochen Zhu, Jing Yi, Jiayi Xie, Zhenzhong Chen

Traditional recommender systems aim to estimate a user's rating to an item based on observed ratings from the population. As with all observational studies, hidden confounders, which are factors that affect both item exposures and user ratings, lead to a systematic bias in the estimation. Consequently, a new trend in recommender system research is to negate the influence of confounders from a causal perspective. Observing that confounders in recommendations are usually shared among items and are therefore multi-cause confounders, we model the recommendation as a multi-cause multi-outcome (MCMO) inference problem. Specifically, to remedy confounding bias, we estimate user-specific latent variables that render the item exposures independent Bernoulli trials. The generative distribution is parameterized by a DNN with factorized logistic likelihood and the intractable posteriors are estimated by variational inference. Controlling these factors as substitute confounders, under mild assumptions, can eliminate the bias incurred by multi-cause confounders. Furthermore, we show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space. Fortunately, we theoretically demonstrate that introducing user features as pre-treatment variables can substantially improve sample efficiency and alleviate overfitting. Empirical studies on simulated and real-world datasets show that the proposed deep causal recommender shows more robustness to unobserved confounders than state-of-the-art causal recommenders. Codes and datasets are released at https://github.com/yaochenzhu/deep-deconf.


  Access Paper or Ask Questions

Task Recommendation in Crowdsourcing Based on Learning Preferences and Reliabilities

Jul 27, 2018
Qiyu Kang, Wee Peng Tay

Workers participating in a crowdsourcing platform can have a wide range of abilities and interests. An important problem in crowdsourcing is the task recommendation problem, in which tasks that best match a particular worker's preferences and reliabilities are recommended to that worker. A task recommendation scheme that assigns tasks more likely to be accepted by a worker who is more likely to complete it reliably results in better performance for the task requester. Without prior information about a worker, his preferences and reliabilities need to be learned over time. In this paper, we propose a multi-armed bandit (MAB) framework to learn a worker's preferences and his reliabilities for different categories of tasks. However, unlike the classical MAB problem, the reward from the worker's completion of a task is unobservable. We therefore include the use of gold tasks (i.e., tasks whose solutions are known \emph{a priori} and which do not produce any rewards) in our task recommendation procedure. Our model could be viewed as a new variant of MAB, in which the random rewards can only be observed at those time steps where gold tasks are used, and the accuracy of estimating the expected reward of recommending a task to a worker depends on the number of gold tasks used. We show that the optimal regret is $O(\sqrt{n})$, where $n$ is the number of tasks recommended to the worker. We develop three task recommendation strategies to determine the number of gold tasks for different task categories, and show that they are order optimal. Simulations verify the efficiency of our approaches.


  Access Paper or Ask Questions

Recommending Burgers based on Pizza Preferences: Addressing Data Sparsity with a Product of Experts

Apr 26, 2021
Martin Milenkoski, Diego Antognini, Claudiu Musat

In this paper we describe a method to tackle data sparsity and create recommendations in domains with limited knowledge about the user preferences. We expand the variational autoencoder collaborative filtering from a single-domain to a multi domain setting. The intuition is that user-item interactions in a source domain can augment the recommendation quality in a target domain. The intuition can be taken to its extreme, where, in a cross-domain setup, the user history in a source domain is enough to generate high quality recommendations in a target one. We thus create a Product-of-Experts (POE) architecture for recommendations that jointly models user-item interactions across multiple domains. The method is resilient to missing data for one or more of the domains, which is a situation often found in real life. We present results on two widely-used datasets - Amazon and Yelp, which support the claim that holistic user preference knowledge leads to better recommendations. Surprisingly, we find that in select cases, a POE recommender that does not access the target domain user representation can surpass a strong VAE recommender baseline trained on the target domain. We complete the analysis with a study of the reasons behind this outperformance and an in-depth look at the resulting embedding spaces.

* Under review. 16 pages, 5 figures, 2 tables 

  Access Paper or Ask Questions

A Soft Recommender System for Social Networks

Jan 08, 2020
Marzieh Pourhojjati-Sabet, Azam Rabiee

Recent social recommender systems benefit from friendship graph to make an accurate recommendation, believing that friends in a social network have exactly the same interests and preferences. Some studies have benefited from hard clustering algorithms (such as K-means) to determine the similarity between users and consequently to define degree of friendships. In this paper, we went a step further to identify true friends for making even more realistic recommendations. we calculated the similarity between users, as well as the dependency between a user and an item. Our hypothesis is that due to the uncertainties in user preferences, the fuzzy clustering, instead of the classical hard clustering, is beneficial in accurate recommendations. We incorporated the C-means algorithm to get different membership degrees of soft users' clusters. Then, the users' similarity metric is defined according to the soft clusters. Later, in a training scheme we determined the latent representations of users and items, extracting from the huge and sparse user-item-tag matrix using matrix factorization. In the parameter tuning, we found the optimum coefficients for the influence of our soft social regularization and the user-item dependency terms. Our experimental results convinced that the proposed fuzzy similarity metric improves the recommendations in real data compared to the baseline social recommender system with the hard clustering.

* 8 pages, 6 figures 

  Access Paper or Ask Questions

<<
27
28
29
30
31
32
33
34
35
36
37
38
39
>>