Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

On the Ethical Limits of Natural Language Processing on Legal Text

May 06, 2021
Dimitrios Tsarapatsanis, Nikolaos Aletras

Natural language processing (NLP) methods for analyzing legal text offer legal scholars and practitioners a range of tools allowing to empirically analyze law on a large scale. However, researchers seem to struggle when it comes to identifying ethical limits to using natural language processing (NLP) systems for acquiring genuine insights both about the law and the systems' predictive capacity. In this paper we set out a number of ways in which to think systematically about such issues. We place emphasis on three crucial normative parameters which have, to the best of our knowledge, been underestimated by current debates: (a) the importance of academic freedom, (b) the existence of a wide diversity of legal and ethical norms domestically but even more so internationally and (c) the threat of moralism in research related to computational law. For each of these three parameters we provide specific recommendations for the legal NLP community. Our discussion is structured around the study of a real-life scenario that has prompted recent debate in the legal NLP research community.

* Accepted at ACL Findings 2021 

  Access Paper or Ask Questions

Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection

Sep 04, 2020
Yining Wang, Yi Chen, Ethan X. Fang, Zhaoran Wang, Runze Li

We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine. However, it is very challenging as we need to balance exploration and exploitation. We propose doubly growing epochs and estimating the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves $ \tilde{\mathcal{O}}(s\sqrt{T})$ regret with high probability, which is nearly independent in the ``ambient'' regression model dimension $d$. We further attain a sharper $\tilde{\mathcal{O}}(\sqrt{sT})$ regret by using the \textsc{SupLinUCB} framework and match the minimax lower bound of low-dimensional linear stochastic bandit problems. Finally, we conduct extensive numerical experiments to demonstrate the applicability and robustness of our algorithms empirically.

* 54 pages, 4 figures 

  Access Paper or Ask Questions

Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint

Jul 09, 2020
Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, Rebecca Reiffenhäuser

Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern day applications can render existing algorithms prohibitively slow, while frequently, those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a $5.83$ approximation and runs in $O(n \log n)$ time, i.e., at least a factor $n$ faster than other state-of-the-art algorithms. The robustness of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a $9$-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data.

  Access Paper or Ask Questions

Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer

May 02, 2020
Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini, Kai-Wei Chang, Ahmed Hassan Awadallah

Multilingual representations embed words from many languages into a single semantic space such that words with similar meanings are close to each other regardless of the language. These embeddings have been widely used in various settings, such as cross-lingual transfer, where a natural language processing (NLP) model trained on one language is deployed to another language. While the cross-lingual transfer techniques are powerful, they carry gender bias from the source to target languages. In this paper, we study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications. We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations from both the intrinsic and extrinsic perspectives. Experimental results show that the magnitude of bias in the multilingual representations changes differently when we align the embeddings to different target spaces and that the alignment direction can also have an influence on the bias in transfer learning. We further provide recommendations for using the multilingual word representations for downstream tasks.

  Access Paper or Ask Questions

IPOD: Corpus of 190,000 Industrial Occupations

Oct 22, 2019
Junhua Liu, Chu Guo, Yung Chuen Ng, Kristin L. Wood, Kwan Hui Lim

Job titles are the most fundamental building blocks for occupational data mining tasks, such as Career Modelling and Job Recommendation. However, there are no publicly available dataset to support such efforts. In this work, we present the Industrial and Professional Occupations Dataset (IPOD), which is a comprehensive corpus that consists of over 190,000 job titles crawled from over 56,000 profiles from Linkedin. To the best of our knowledge, IPOD is the first dataset released for industrial occupations mining. We use a knowledge-based approach for sequence tagging, creating a gazzetteer with domain-specific named entities tagged by 3 experts. All title NE tags are populated by the gazetteer using BIOES scheme. Finally, We develop 4 baseline models for the dataset on NER task with several models, including Linear Regression, CRF, LSTM and the state-of-the-art bi-directional LSTM-CRF. Both CRF and LSTM-CRF outperform human in both exact-match accuracy and f1 scores.

  Access Paper or Ask Questions

Generative Graph Convolutional Network for Growing Graphs

Mar 06, 2019
Da Xu, Chuanwei Ruan, Kamiya Motwani, Evren Korpeoglu, Sushant Kumar, Kannan Achan

Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.

  Access Paper or Ask Questions

Inferring Concept Prerequisite Relations from Online Educational Resources

Nov 30, 2018
Sudeshna Roy, Meghana Madhyastha, Sheril Lawrence, Vaibhav Rajan

The Internet has rich and rapidly increasing sources of high quality educational content. Inferring prerequisite relations between educational concepts is required for modern large-scale online educational technology applications such as personalized recommendations and automatic curriculum creation. We present PREREQ, a new supervised learning method for inferring concept prerequisite relations. PREREQ is designed using latent representations of concepts obtained from the Pairwise Latent Dirichlet Allocation model, and a neural network based on the Siamese network architecture. PREREQ can learn unknown concept prerequisites from course prerequisites and labeled concept prerequisite data. It outperforms state-of-the-art approaches on benchmark datasets and can effectively learn from very less training data. PREREQ can also use unlabeled video playlists, a steadily growing source of training data, to learn concept prerequisites, thus obviating the need for manual annotation of course prerequisites.

* Accepted at the AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19) 

  Access Paper or Ask Questions

The Foundations of Deep Learning with a Path Towards General Intelligence

Jun 22, 2018
Eray Özkural

Like any field of empirical science, AI may be approached axiomatically. We formulate requirements for a general-purpose, human-level AI system in terms of postulates. We review the methodology of deep learning, examining the explicit and tacit assumptions in deep learning research. Deep Learning methodology seeks to overcome limitations in traditional machine learning research as it combines facets of model richness, generality, and practical applicability. The methodology so far has produced outstanding results due to a productive synergy of function approximation, under plausible assumptions of irreducibility and the efficiency of back-propagation family of algorithms. We examine these winning traits of deep learning, and also observe the various known failure modes of deep learning. We conclude by giving recommendations on how to extend deep learning methodology to cover the postulates of general-purpose AI including modularity, and cognitive architecture. We also relate deep learning to advances in theoretical neuroscience research.

* Submitted to AGI 2018 

  Access Paper or Ask Questions

Data Poisoning Attacks on Factorization-Based Collaborative Filtering

Oct 05, 2016
Bo Li, Yining Wang, Aarti Singh, Yevgeniy Vorobeychik

Recommendation and collaborative filtering systems are important in modern information and e-commerce applications. As these systems are becoming increasingly popular in the industry, their outputs could affect business decision making, introducing incentives for an adversarial party to compromise the availability or integrity of such systems. We introduce a data poisoning attack on collaborative filtering systems. We demonstrate how a powerful attacker with full knowledge of the learner can generate malicious data so as to maximize his/her malicious objectives, while at the same time mimicking normal user behavior to avoid being detected. While the complete knowledge assumption seems extreme, it enables a robust assessment of the vulnerability of collaborative filtering schemes to highly motivated attacks. We present efficient solutions for two popular factorization-based collaborative filtering algorithms: the \emph{alternative minimization} formulation and the \emph{nuclear norm minimization} method. Finally, we test the effectiveness of our proposed algorithms on real-world data and discuss potential defensive strategies.

  Access Paper or Ask Questions

ICD 10 Based Medical Expert System Using Fuzzy Temporal Logic

Jan 12, 2010
P. Chinniah, Dr. S. Muttan

Medical diagnosis process involves many levels and considerable amount of time and money are invariably spent for the first level of diagnosis usually made by the physician for all the patients every time. Hence there is a need for a computer based system which not only asks relevant questions to the patients but also aids the physician by giving a set of possible diseases from the symptoms obtained using logic at inference. In this work, an ICD10 based Medical Expert System that provides advice, information and recommendation to the physician using fuzzy temporal logic. The knowledge base used in this system consists of facts of symptoms and rules on diseases. It also provides fuzzy severity scale and weight factor for symptom and disease and can vary with respect to time. The system generates the possible disease conditions based on modified Euclidean metric using Elders algorithm for effective clustering. The minimum similarity value is used as the decision parameter to identify a disease.

* International Journal of Computer Science and Information Security, IJCSIS, Vol. 6, No. 3, pp. 084-089, December 2009, USA 
* 6 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS December 2009, ISSN 1947 5500, 

  Access Paper or Ask Questions