Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Emergence of Structural Bias in Differential Evolution

May 10, 2021
Bas van Stein, Fabio Caraffini, Anna V. Kononova

Heuristic optimisation algorithms are in high demand due to the overwhelming amount of complex optimisation problems that need to be solved. The complexity of these problems is well beyond the boundaries of applicability of exact optimisation algorithms and therefore require modern heuristics to find feasible solutions quickly. These heuristics and their effects are almost always evaluated and explained by particular problem instances. In previous works, it has been shown that many such algorithms show structural bias, by either being attracted to a certain region of the search space or by consistently avoiding regions of the search space, on a special test function designed to ensure uniform 'exploration' of the domain. In this paper, we analyse the emergence of such structural bias for Differential Evolution (DE) configurations and, specifically, the effect of different mutation, crossover and correction strategies. We also analyse the emergence of the structural bias during the run-time of each algorithm. We conclude with recommendations of which configurations should be avoided in order to run DE unbiased.

  Access Paper or Ask Questions

Fairness of Exposure in Stochastic Bandits

Mar 03, 2021
Lequn Wang, Yiwei Bai, Wen Sun, Thorsten Joachims

Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get exposed to the users. This raises questions of fairness to the items -- and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting, and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sub-linear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can fairly allocate exposure to different arms effectively.

  Access Paper or Ask Questions

Enhancing Reading Strategies by Exploring A Theme-based Approach to Literature Surveys

Feb 10, 2021
Tanya Howden, Pierre Le Bras, Thomas S. Methven, Stefano Padilla, Mike J. Chantler

Searching large digital repositories can be extremely frustrating, as common list-based formats encourage users to adopt a convenience-sampling approach that favours chance discovery and random search, over meaningful exploration. We have designed a methodology that allows users to visually and thematically explore corpora, while developing personalised holistic reading strategies. We describe the results of a three-phase qualitative study, in which experienced researchers used our interactive visualisation approach to analyse a set of publications and select relevant themes and papers. Using in-depth semi-structured interviews and stimulated recall, we found that users: (i) selected papers that they otherwise would not have read, (ii) developed a more coherent reading strategy, and (iii) understood the thematic structure and relationships between papers more effectively. Finally, we make six design recommendations to enhance current digital repositories that we have shown encourage users to adopt a more holistic and thematic research approach.

  Access Paper or Ask Questions

A Cognitive Approach based on the Actionable Knowledge Graph for supporting Maintenance Operations

Nov 18, 2020
Giuseppe Fenza, Mariacristina Gallo, Vincenzo Loia, Domenico Marino, Francesco Orciuoli

In the era of Industry 4.0, cognitive computing and its enabling technologies (Artificial Intelligence, Machine Learning, etc.) allow to define systems able to support maintenance by providing relevant information, at the right time, retrieved from structured companies' databases, and unstructured documents, like technical manuals, intervention reports, and so on. Moreover, contextual information plays a crucial role in tailoring the support both during the planning and the execution of interventions. Contextual information can be detected with the help of sensors, wearable devices, indoor and outdoor positioning systems, and object recognition capabilities (using fixed or wearable cameras), all of which can collect historical data for further analysis. In this work, we propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices in terms of time, budget, and scope. The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.

* 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Bari, Italy, 2020, pp. 1-7 

  Access Paper or Ask Questions

Domain-specific Knowledge Graphs: A survey

Nov 03, 2020
Bilal Abu-Salih

Knowledge Graphs (KGs) have made a qualitative leap and effected a real revolution in knowledge representation. This is leveraged by the underlying structure of the KG which underpins a better comprehension, reasoning and interpreting of knowledge for both human and machine. Therefore, KGs continue to be used as a main driver to tackle a plethora of real-life problems in dissimilar domains. However, there is no consensus on a plausible and definition to domain KG. Further, in conjunction with several limitations and deficiencies, various domain KG construction approaches are far from perfection. This survey is the first to provide an inclusive definition to the notion of domain KG. Also, a comprehensive review of the state-of-the-art approaches drawn from academic works relevant to seven dissimilar domains of knowledge is provided. The scrutiny of the current approaches reveals a correlated array of limitations and deficiencies. The set of improvements made to address the limitations of the current approaches are introduced followed by recommendations and opportunities for future research directions.

  Access Paper or Ask Questions

Multi-source Data Mining for e-Learning

Sep 17, 2020
Julie Bu Daher, Armelle Brun, Anne Boyer

Data mining is the task of discovering interesting, unexpected or valuable structures in large datasets and transforming them into an understandable structure for further use . Different approaches in the domain of data mining have been proposed, among which pattern mining is the most important one. Pattern mining mining involves extracting interesting frequent patterns from data. Pattern mining has grown to be a topic of high interest where it is used for different purposes, for example, recommendations. Some of the most common challenges in this domain include reducing the complexity of the process and avoiding the redundancy within the patterns. So far, pattern mining has mainly focused on the mining of a single data source. However, with the increase in the amount of data, in terms of volume, diversity of sources and nature of data, mining multi-source and heterogeneous data has become an emerging challenge in this domain. This challenge is the main focus of our work where we propose to mine multi-source data in order to extract interesting frequent patterns.

* 7th International Symposium "From Data to Models and Back (DataMod)" 2018 Jun 25 

  Access Paper or Ask Questions

SHACL Satisfiability and Containment (Extended Paper)

Aug 31, 2020
Paolo Pareti, George Konstantinidis, Fabio Mogavero, Timothy J. Norman

The Shapes Constraint Language (SHACL) is a recent W3C recommendation language for validating RDF data. Specifically, SHACL documents are collections of constraints that enforce particular shapes on an RDF graph. Previous work on the topic has provided theoretical and practical results for the validation problem, but did not consider the standard decision problems of satisfiability and containment, which are crucial for verifying the feasibility of the constraints and important for design and optimization purposes. In this paper, we undertake a thorough study of different features of non-recursive SHACL by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL w.r.t. satisfiability and containment. We study the interaction of SHACL features in this logic and provide the detailed map of decidability and complexity results of the aforementioned decision problems for different SHACL sublanguages. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features.

  Access Paper or Ask Questions

Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards

Apr 14, 2020
Aadirupa Saha, Pierre Gaillard, Michael Valko

In this paper, we consider the problem of sleeping bandits with stochastic action sets and adversarial rewards. In this setting, in contrast to most work in bandits, the actions may not be available at all times. For instance, some products might be out of stock in item recommendation. The best existing efficient (i.e., polynomial-time) algorithms for this problem only guarantee a $O(T^{2/3})$ upper-bound on the regret. Yet, inefficient algorithms based on EXP4 can achieve $O(\sqrt{T})$. In this paper, we provide a new computationally efficient algorithm inspired by EXP3 satisfying a regret of order $O(\sqrt{T})$ when the availabilities of each action $i \in \cA$ are independent. We then study the most general version of the problem where at each round available sets are generated from some unknown arbitrary distribution (i.e., without the independence assumption) and propose an efficient algorithm with $O(\sqrt {2^K T})$ regret guarantee. Our theoretical results are corroborated with experimental evaluations.

* 28 pages, 11 figues 

  Access Paper or Ask Questions

A Scalable, Flexible Augmentation of the Student Education Process

Oct 17, 2018
Bhairav Mehta, Adithya Ramanathan

We present a novel intelligent tutoring system which builds upon well-established hypotheses in educational psychology and incorporates them inside of a scalable software architecture. Specifically, we build upon the known benefits of knowledge vocalization, parallel learning, and immediate feedback in the context of student learning. We show that open-source data combined with state-of-the-art techniques in deep learning and natural language processing can apply the benefits of these three factors at scale, while still operating at the granularity of individual student needs and recommendations. Additionally, we allow teachers to retain full control of the outputs of the algorithms, and provide student statistics to help better guide classroom discussions towards topics that would benefit from more in-person review and coverage. Our experiments and pilot programs show promising results, and cement our hypothesis that the system is flexible enough to serve a wide variety of purposes in both classroom and classroom-free settings.

* Submitted to NIPS 2018 AI for Social Good Workshop 

  Access Paper or Ask Questions

Common Misconceptions about Population Data

Jan 03, 2022
Peter Christen, Rainer Schnell

Databases covering all individuals of a population are increasingly used for research studies in domains ranging from public health to the social sciences. There is also growing interest by governments and businesses to use population data to support data-driven decision making. The massive size of such databases is often mistaken as a guarantee for valid inferences on the population of interest. However, population data have characteristics that make them challenging to use, including various assumptions being made how such data were collected and what types of processing have been applied to them. Furthermore, the full potential of population data can often only be unlocked when such data are linked to other databases, a process that adds fresh challenges. This article discusses a diverse range of misconceptions about population data that we believe anybody who works with such data needs to be aware of. Many of these misconceptions are not well documented in scientific publications but only discussed anecdotally among researchers and practitioners. We conclude with a set of recommendations for inference when using population data.

  Access Paper or Ask Questions