Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

A Cognitive Approach based on the Actionable Knowledge Graph for supporting Maintenance Operations

Nov 18, 2020
Giuseppe Fenza, Mariacristina Gallo, Vincenzo Loia, Domenico Marino, Francesco Orciuoli

In the era of Industry 4.0, cognitive computing and its enabling technologies (Artificial Intelligence, Machine Learning, etc.) allow to define systems able to support maintenance by providing relevant information, at the right time, retrieved from structured companies' databases, and unstructured documents, like technical manuals, intervention reports, and so on. Moreover, contextual information plays a crucial role in tailoring the support both during the planning and the execution of interventions. Contextual information can be detected with the help of sensors, wearable devices, indoor and outdoor positioning systems, and object recognition capabilities (using fixed or wearable cameras), all of which can collect historical data for further analysis. In this work, we propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices in terms of time, budget, and scope. The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.

* 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Bari, Italy, 2020, pp. 1-7 

  Access Paper or Ask Questions

Domain-specific Knowledge Graphs: A survey

Nov 03, 2020
Bilal Abu-Salih

Knowledge Graphs (KGs) have made a qualitative leap and effected a real revolution in knowledge representation. This is leveraged by the underlying structure of the KG which underpins a better comprehension, reasoning and interpreting of knowledge for both human and machine. Therefore, KGs continue to be used as a main driver to tackle a plethora of real-life problems in dissimilar domains. However, there is no consensus on a plausible and definition to domain KG. Further, in conjunction with several limitations and deficiencies, various domain KG construction approaches are far from perfection. This survey is the first to provide an inclusive definition to the notion of domain KG. Also, a comprehensive review of the state-of-the-art approaches drawn from academic works relevant to seven dissimilar domains of knowledge is provided. The scrutiny of the current approaches reveals a correlated array of limitations and deficiencies. The set of improvements made to address the limitations of the current approaches are introduced followed by recommendations and opportunities for future research directions.

  Access Paper or Ask Questions

Multi-source Data Mining for e-Learning

Sep 17, 2020
Julie Bu Daher, Armelle Brun, Anne Boyer

Data mining is the task of discovering interesting, unexpected or valuable structures in large datasets and transforming them into an understandable structure for further use . Different approaches in the domain of data mining have been proposed, among which pattern mining is the most important one. Pattern mining mining involves extracting interesting frequent patterns from data. Pattern mining has grown to be a topic of high interest where it is used for different purposes, for example, recommendations. Some of the most common challenges in this domain include reducing the complexity of the process and avoiding the redundancy within the patterns. So far, pattern mining has mainly focused on the mining of a single data source. However, with the increase in the amount of data, in terms of volume, diversity of sources and nature of data, mining multi-source and heterogeneous data has become an emerging challenge in this domain. This challenge is the main focus of our work where we propose to mine multi-source data in order to extract interesting frequent patterns.

* 7th International Symposium "From Data to Models and Back (DataMod)" 2018 Jun 25 

  Access Paper or Ask Questions

SHACL Satisfiability and Containment (Extended Paper)

Aug 31, 2020
Paolo Pareti, George Konstantinidis, Fabio Mogavero, Timothy J. Norman

The Shapes Constraint Language (SHACL) is a recent W3C recommendation language for validating RDF data. Specifically, SHACL documents are collections of constraints that enforce particular shapes on an RDF graph. Previous work on the topic has provided theoretical and practical results for the validation problem, but did not consider the standard decision problems of satisfiability and containment, which are crucial for verifying the feasibility of the constraints and important for design and optimization purposes. In this paper, we undertake a thorough study of different features of non-recursive SHACL by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL w.r.t. satisfiability and containment. We study the interaction of SHACL features in this logic and provide the detailed map of decidability and complexity results of the aforementioned decision problems for different SHACL sublanguages. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features.

  Access Paper or Ask Questions

Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards

Apr 14, 2020
Aadirupa Saha, Pierre Gaillard, Michael Valko

In this paper, we consider the problem of sleeping bandits with stochastic action sets and adversarial rewards. In this setting, in contrast to most work in bandits, the actions may not be available at all times. For instance, some products might be out of stock in item recommendation. The best existing efficient (i.e., polynomial-time) algorithms for this problem only guarantee a $O(T^{2/3})$ upper-bound on the regret. Yet, inefficient algorithms based on EXP4 can achieve $O(\sqrt{T})$. In this paper, we provide a new computationally efficient algorithm inspired by EXP3 satisfying a regret of order $O(\sqrt{T})$ when the availabilities of each action $i \in \cA$ are independent. We then study the most general version of the problem where at each round available sets are generated from some unknown arbitrary distribution (i.e., without the independence assumption) and propose an efficient algorithm with $O(\sqrt {2^K T})$ regret guarantee. Our theoretical results are corroborated with experimental evaluations.

* 28 pages, 11 figues 

  Access Paper or Ask Questions

A Scalable, Flexible Augmentation of the Student Education Process

Oct 17, 2018
Bhairav Mehta, Adithya Ramanathan

We present a novel intelligent tutoring system which builds upon well-established hypotheses in educational psychology and incorporates them inside of a scalable software architecture. Specifically, we build upon the known benefits of knowledge vocalization, parallel learning, and immediate feedback in the context of student learning. We show that open-source data combined with state-of-the-art techniques in deep learning and natural language processing can apply the benefits of these three factors at scale, while still operating at the granularity of individual student needs and recommendations. Additionally, we allow teachers to retain full control of the outputs of the algorithms, and provide student statistics to help better guide classroom discussions towards topics that would benefit from more in-person review and coverage. Our experiments and pilot programs show promising results, and cement our hypothesis that the system is flexible enough to serve a wide variety of purposes in both classroom and classroom-free settings.

* Submitted to NIPS 2018 AI for Social Good Workshop 

  Access Paper or Ask Questions

Common Misconceptions about Population Data

Jan 03, 2022
Peter Christen, Rainer Schnell

Databases covering all individuals of a population are increasingly used for research studies in domains ranging from public health to the social sciences. There is also growing interest by governments and businesses to use population data to support data-driven decision making. The massive size of such databases is often mistaken as a guarantee for valid inferences on the population of interest. However, population data have characteristics that make them challenging to use, including various assumptions being made how such data were collected and what types of processing have been applied to them. Furthermore, the full potential of population data can often only be unlocked when such data are linked to other databases, a process that adds fresh challenges. This article discusses a diverse range of misconceptions about population data that we believe anybody who works with such data needs to be aware of. Many of these misconceptions are not well documented in scientific publications but only discussed anecdotally among researchers and practitioners. We conclude with a set of recommendations for inference when using population data.

  Access Paper or Ask Questions

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Nov 02, 2021
Clémence Réda, Andrea Tirinzoni, Rémy Degenne

We study the problem of the identification of m arms with largest means under a fixed error rate $\delta$ (fixed-confidence Top-m identification), for misspecified linear bandit models. This problem is motivated by practical applications, especially in medicine and recommendation systems, where linear models are popular due to their simplicity and the existence of efficient algorithms, but in which data inevitably deviates from linearity. In this work, we first derive a tractable lower bound on the sample complexity of any $\delta$-correct algorithm for the general Top-m identification problem. We show that knowing the scale of the deviation from linearity is necessary to exploit the structure of the problem. We then describe the first algorithm for this setting, which is both practical and adapts to the amount of misspecification. We derive an upper bound to its sample complexity which confirms this adaptivity and that matches the lower bound when $\delta$ $\rightarrow$ 0. Finally, we evaluate our algorithm on both synthetic and real-world data, showing competitive performance with respect to existing baselines.

* Virtual conference 

  Access Paper or Ask Questions

Kernel Identification Through Transformers

Jun 15, 2021
Fergus Simpson, Ian Davies, Vidhi Lalchand, Alessandro Vullo, Nicolas Durrande, Carl Rasmussen

Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models, as the chosen kernel determines both the inductive biases and prior support of functions under the GP prior. This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models. Drawing inspiration from recent progress in deep learning, we introduce a novel approach named KITT: Kernel Identification Through Transformers. KITT exploits a transformer-based architecture to generate kernel recommendations in under 0.1 seconds, which is several orders of magnitude faster than conventional kernel search algorithms. We train our model using synthetic data generated from priors over a vocabulary of known kernels. By exploiting the nature of the self-attention mechanism, KITT is able to process datasets with inputs of arbitrary dimension. We demonstrate that kernels chosen by KITT yield strong performance over a diverse collection of regression benchmarks.

* 12 pages, 5 figures 

  Access Paper or Ask Questions