Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study

Jun 10, 2020
Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem

In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-level design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [Engstrom'20]. As a step towards filling that gap, we implement >50 such ``choices'' in a unified on-policy RL framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250'000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for on-policy training of RL agents.


  Access Paper or Ask Questions

A Dataset Schema for Cooperative Learning from Demonstration in Multi-robots Systems

Dec 03, 2019
Marco A. C. Simões, Robson Marinho da Silva, Tatiane Nogueira

Multi-Agent Systems (MASs) have been used to solve complex problems that demand intelligent agents working together to reach the desired goals. These Agents should effectively synchronize their individual behaviors so that they can act as a team in a coordinated manner to achieve the common goal of the whole system. One of the main issues in MASs is the agents' coordination, being common domain experts observing MASs execution disapprove agents' decisions. Even if the MAS was designed using the best methods and tools for agents' coordination, this difference of decisions between experts and MAS is confirmed. Therefore, this paper proposes a new dataset schema to support learning the coordinated behavior in MASs from demonstration. The results of the proposed solution are validated in a Multi-Robot System (MRS) organizing a collection of new cooperative plans recommendations from the demonstration by domain experts.

* This is a pre-print of an article published in the Journal of Intelligent & Robotic Systems. The final authenticated version will be available online at: https://doi. org/10.1007/s10846-019-01123-w 

  Access Paper or Ask Questions

Constructing Ontology-Based Cancer Treatment Decision Support System with Case-Based Reasoning

Dec 05, 2018
Ying Shen, Joël Colloc, Armelle Jacquet-Andrieu, Ziyi Guo, Yong Liu

Decision support is a probabilistic and quantitative method designed for modeling problems in situations with ambiguity. Computer technology can be employed to provide clinical decision support and treatment recommendations. The problem of natural language applications is that they lack formality and the interpretation is not consistent. Conversely, ontologies can capture the intended meaning and specify modeling primitives. Disease Ontology (DO) that pertains to cancer's clinical stages and their corresponding information components is utilized to improve the reasoning ability of a decision support system (DSS). The proposed DSS uses Case-Based Reasoning (CBR) to consider disease manifestations and provides physicians with treatment solutions from similar previous cases for reference. The proposed DSS supports natural language processing (NLP) queries. The DSS obtained 84.63% accuracy in disease classification with the help of the ontology.

* International Conference on Smart Computing and Communication SmartCom 2017: Smart Computing and Communication pp 278-288 

  Access Paper or Ask Questions

An integrated recurrent neural network and regression model with spatial and climatic couplings for vector-borne disease dynamics

Jan 23, 2022
Zhijian Li, Jack Xin, Guofa Zhou

We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for vector-borne disease evolution. We take into account climate data and seasonality as external factors that correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme motivated by recommendation systems. The neighboring regions' influence is modeled by a long short-term memory neural network. The integrated model is trained by stochastic gradient descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred. Our model outperformed ARIMA models across a number of regions with high infections, and an associated ablation study renders support to our modeling hypothesis and ideas.


  Access Paper or Ask Questions

Analyzing the Machine Learning Conference Review Process

Nov 26, 2020
David Tran, Alex Valtchanov, Keshav Ganapathy, Raymond Feng, Eric Slud, Micah Goldblum, Tom Goldstein

Mainstream machine learning conferences have seen a dramatic increase in the number of participants, along with a growing range of perspectives, in recent years. Members of the machine learning community are likely to overhear allegations ranging from randomness of acceptance decisions to institutional bias. In this work, we critically analyze the review process through a comprehensive study of papers submitted to ICLR between 2017 and 2020. We quantify reproducibility/randomness in review scores and acceptance decisions, and examine whether scores correlate with paper impact. Our findings suggest strong institutional bias in accept/reject decisions, even after controlling for paper quality. Furthermore, we find evidence for a gender gap, with female authors receiving lower scores, lower acceptance rates, and fewer citations per paper than their male counterparts. We conclude our work with recommendations for future conference organizers.

* NeurIPS Workshop on Navigating the Broader Impacts of AI Research. Full version at arXiv:2010.05137 

  Access Paper or Ask Questions

An Open Review of OpenReview: A Critical Analysis of the Machine Learning Conference Review Process

Oct 26, 2020
David Tran, Alex Valtchanov, Keshav Ganapathy, Raymond Feng, Eric Slud, Micah Goldblum, Tom Goldstein

Mainstream machine learning conferences have seen a dramatic increase in the number of participants, along with a growing range of perspectives, in recent years. Members of the machine learning community are likely to overhear allegations ranging from randomness of acceptance decisions to institutional bias. In this work, we critically analyze the review process through a comprehensive study of papers submitted to ICLR between 2017 and 2020. We quantify reproducibility/randomness in review scores and acceptance decisions, and examine whether scores correlate with paper impact. Our findings suggest strong institutional bias in accept/reject decisions, even after controlling for paper quality. Furthermore, we find evidence for a gender gap, with female authors receiving lower scores, lower acceptance rates, and fewer citations per paper than their male counterparts. We conclude our work with recommendations for future conference organizers.

* 19 pages, 6 Figures 

  Access Paper or Ask Questions

Quantifying Explainability of Saliency Methods in Deep Neural Networks

Sep 07, 2020
Erico Tjoa, Cuntai Guan

One way to achieve eXplainable artificial intelligence (XAI) is through the use of post-hoc analysis methods. In particular, methods that generate heatmaps have been used to explain black-box models, such as deep neural network. In some cases, heatmaps are appealing due to the intuitive and visual ways to understand them. However, quantitative analysis that demonstrates the actual potential of heatmaps have been lacking, and comparison between different methods are not standardized as well. In this paper, we introduce a synthetic data that can be generated adhoc along with the ground-truth heatmaps for better quantitative assessment. Each sample data is an image of a cell with easily distinguishable features, facilitating a more transparent assessment of different XAI methods. Comparison and recommendations are made, shortcomings are clarified along with suggestions for future research directions to handle the finer details of select post-hoc analysis methods.


  Access Paper or Ask Questions

On the Use/Misuse of the Term 'Phoneme'

Jul 26, 2019
Roger K. Moore, Lucy Skidmore

The term 'phoneme' lies at the heart of speech science and technology, and yet it is not clear that the research community fully appreciates its meaning and implications. In particular, it is suspected that many researchers use the term in a casual sense to refer to the sounds of speech, rather than as a well defined abstract concept. If true, this means that some sections of the community may be missing an opportunity to understand and exploit the implications of this important psychological phenomenon. Here we review the correct meaning of the term 'phoneme' and report the results of an investigation into its use/misuse in the accepted papers at INTERSPEECH-2018. It is confirmed that a significant proportion of the community (i) may not be aware of the critical difference between `phonetic' and 'phonemic' levels of description, (ii) may not fully understand the significance of 'phonemic contrast', and as a consequence, (iii) consistently misuse the term 'phoneme'. These findings are discussed, and recommendations are made as to how this situation might be mitigated.

* Accepted at INTERSPEECH-2019 

  Access Paper or Ask Questions

Hierarchical Annotation of Images with Two-Alternative-Forced-Choice Metric Learning

Jun 05, 2019
Niels Hellinga, Vlado Menkovski

Many tasks such as retrieval and recommendations can significantly benefit from structuring the data, commonly in a hierarchical way. To achieve this through annotations of high dimensional data such as images or natural text can be significantly labor intensive. We propose an approach for uncovering the hierarchical structure of data based on efficient discriminative testing rather than annotations of individual datapoints. Using two-alternative-forced-choice (2AFC) testing and deep metric learning we achieve embedding of the data in semantic space where we are able to successfully hierarchically cluster. We actively select triplets for the 2AFC test such that the modeling process is highly efficient with respect to the number of tests presented to the annotator. We empirically demonstrate the feasibility of the method by confirming the shape bias on synthetic data and extract hierarchical structure on the Fashion-MNIST dataset to a finer granularity than the original labels.

* presented at 2019 ICML Workshop on Human in the Loop Learning (HILL 2019), Long Beach, USA 

  Access Paper or Ask Questions

<<
299
300
301
302
303
304
305
306
307
308
309
310
311
>>