Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

What if we Increase the Number of Objectives? Theoretical and Empirical Implications for Many-objective Optimization

Jun 06, 2021
Richard Allmendinger, Andrzej Jaszkiewicz, Arnaud Liefooghe, Christiane Tammer

The difficulty of solving a multi-objective optimization problem is impacted by the number of objectives to be optimized. The presence of many objectives typically introduces a number of challenges that affect the choice/design of optimization algorithms. This paper investigates the drivers of these challenges from two angles: (i) the influence of the number of objectives on problem characteristics and (ii) the practical behavior of commonly used procedures and algorithms for coping with many objectives. In addition to reviewing various drivers, the paper makes theoretical contributions by quantifying some drivers and/or verifying these drivers empirically by carrying out experiments on multi-objective NK landscapes and other typical benchmarks. We then make use of our theoretical and empirical findings to derive practical recommendations to support algorithm design. Finally, we discuss remaining theoretical gaps and opportunities for future research in the area of multi- and many-objective optimization.

  Access Paper or Ask Questions

Good practices for Bayesian Optimization of high dimensional structured spaces

Jan 06, 2021
Eero Siivola, Javier Gonzalez, Andrei Paleyes, Aki Vehtari

The increasing availability of structured but high dimensional data has opened new opportunities for optimization. One emerging and promising avenue is the exploration of unsupervised methods for projecting structured high dimensional data into low dimensional continuous representations, simplifying the optimization problem and enabling the application of traditional optimization methods. However, this line of research has been purely methodological with little connection to the needs of practitioners so far. In this paper, we study the effect of different search space design choices for performing Bayesian Optimization in high dimensional structured datasets. In particular, we analyse the influence of the dimensionality of the latent space, the role of the acquisition function and evaluate new methods to automatically define the optimization bounds in the latent space. Finally, based on experimental results using synthetic and real datasets, we provide recommendations for the practitioners.

  Access Paper or Ask Questions

Impact of Accuracy on Model Interpretations

Nov 17, 2020
Brian Liu, Madeleine Udell

Model interpretations are often used in practice to extract real world insights from machine learning models. These interpretations have a wide range of applications; they can be presented as business recommendations or used to evaluate model bias. It is vital for a data scientist to choose trustworthy interpretations to drive real world impact. Doing so requires an understanding of how the accuracy of a model impacts the quality of standard interpretation tools. In this paper, we will explore how a model's predictive accuracy affects interpretation quality. We propose two metrics to quantify the quality of an interpretation and design an experiment to test how these metrics vary with model accuracy. We find that for datasets that can be modeled accurately by a variety of methods, simpler methods yield higher quality interpretations. We also identify which interpretation method works the best for lower levels of model accuracy.

* 7 pages, 5 figures 

  Access Paper or Ask Questions

Private Reinforcement Learning with PAC and Regret Guarantees

Sep 18, 2020
Giuseppe Vietri, Borja Balle, Akshay Krishnamurthy, Zhiwei Steven Wu

Motivated by high-stakes decision-making domains like personalized medicine where user information is inherently sensitive, we design privacy preserving exploration policies for episodic reinforcement learning (RL). We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)--a strong variant of differential privacy for settings where each user receives their own sets of output (e.g., policy recommendations). We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee. Our algorithm only pays for a moderate privacy cost on exploration: in comparison to the non-private bounds, the privacy parameter only appears in lower-order terms. Finally, we present lower bounds on sample complexity and regret for reinforcement learning subject to JDP.

  Access Paper or Ask Questions

Causality Learning: A New Perspective for Interpretable Machine Learning

Jun 27, 2020
Guandong Xu, Tri Dung Duong, Qian Li, Shaowu Liu, Xianzhi Wang

Recent years have witnessed the rapid growth of machine learning in a wide range of fields such as image recognition, text classification, credit scoring prediction, recommendation system, etc. In spite of their great performance in different sectors, researchers still concern about the mechanism under any machine learning (ML) techniques that are inherently black-box and becoming more complex to achieve higher accuracy. Therefore, interpreting machine learning model is currently a mainstream topic in the research community. However, the traditional interpretable machine learning focuses on the association instead of the causality. This paper provides an overview of causal analysis with the fundamental background and key concepts, and then summarizes most recent causal approaches for interpretable machine learning. The evaluation techniques for assessing method quality, and open problems in causal interpretability are also discussed in this paper.

* 8 Pages 

  Access Paper or Ask Questions

Pose Trainer: Correcting Exercise Posture using Pose Estimation

Jun 21, 2020
Steven Chen, Richard R. Yang

Fitness exercises are very beneficial to personal health and fitness; however, they can also be ineffective and potentially dangerous if performed incorrectly by the user. Exercise mistakes are made when the user does not use the proper form, or pose. In our work, we introduce Pose Trainer, an application that detects the user's exercise pose and provides personalized, detailed recommendations on how the user can improve their form. Pose Trainer uses the state of the art in pose estimation to detect a user's pose, then evaluates the vector geometry of the pose through an exercise to provide useful feedback. We record a dataset of over 100 exercise videos of correct and incorrect form, based on personal training guidelines, and build geometric-heuristic and machine learning algorithms for evaluation. Pose Trainer works on four common exercises and supports any Windows or Linux computer with a GPU.

  Access Paper or Ask Questions

Knowledge representation and diagnostic inference using Bayesian networks in the medical discourse

Sep 18, 2019
Sebastian Flügge, Sandra Zimmer, Uwe Petersohn

For the diagnostic inference under uncertainty Bayesian networks are investigated. The method is based on an adequate uniform representation of the necessary knowledge. This includes both generic and experience-based specific knowledge, which is stored in a knowledge base. For knowledge processing, a combination of the problem-solving methods of concept-based and case-based reasoning is used. Concept-based reasoning is used for the diagnosis, therapy and medication recommendation and evaluation of generic knowledge. Exceptions in the form of specific patient cases are processed by case-based reasoning. In addition, the use of Bayesian networks allows to deal with uncertainty, fuzziness and incompleteness. Thus, the valid general concepts can be issued according to their probability. To this end, various inference mechanisms are introduced and subsequently evaluated within the context of a developed prototype. Tests are employed to assess the classification of diagnoses by the network.

  Access Paper or Ask Questions

Examining Deep Learning Architectures for Crime Classification and Prediction

Dec 03, 2018
Panagiotis Stalidis, Theodoros Semertzidis, Petros Daras

In this paper, a detailed study on crime classification and prediction using deep learning architectures is presented. We examine the effectiveness of deep learning algorithms on this domain and provide recommendations for designing and training deep learning systems for predicting crime areas, using open data from police reports. Having as training data time-series of crime types per location, a comparative study of 10 state-of-the-art methods against 3 different deep learning configurations is conducted. In our experiments with five publicly available datasets, we demonstrate that the deep learning-based methods consistently outperform the existing best-performing methods. Moreover, we evaluate the effectiveness of different parameters in the deep learning architectures and give insights for configuring them in order to achieve improved performance in crime classification and finally crime prediction.

  Access Paper or Ask Questions

Suggesting Cooking Recipes Through Simulation and Bayesian Optimization

Nov 09, 2018
Eduardo C. Garrido-Merchán, Alejandro Albarca-Molina

Cooking typically involves a plethora of decisions about ingredients and tools that need to be chosen in order to write a good cooking recipe. Cooking can be modelled in an optimization framework, as it involves a search space of ingredients, kitchen tools, cooking times or temperatures. If we model as an objective function the quality of the recipe, several problems arise. No analytical expression can model all the recipes, so no gradients are available. The objective function is subjective, in other words, it contains noise. Moreover, evaluations are expensive both in time and human resources. Bayesian Optimization (BO) emerges as an ideal methodology to tackle problems with these characteristics. In this paper, we propose a methodology to suggest recipe recommendations based on a Machine Learning (ML) model that fits real and simulated data and BO. We provide empirical evidence with two experiments that support the adequacy of the methodology.

  Access Paper or Ask Questions