Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

AMAD: Adversarial Multiscale Anomaly Detection on High-Dimensional and Time-Evolving Categorical Data

Jul 12, 2019
Zheng Gao, Lin Guo, Chi Ma, Xiao Ma, Kai Sun, Hang Xiang, Xiaoqiang Zhu, Hongsong Li, Xiaozhong Liu

Anomaly detection is facing with emerging challenges in many important industry domains, such as cyber security and online recommendation and advertising. The recent trend in these areas calls for anomaly detection on time-evolving data with high-dimensional categorical features without labeled samples. Also, there is an increasing demand for identifying and monitoring irregular patterns at multiple resolutions. In this work, we propose a unified end-to-end approach to solve these challenges by combining the advantages of Adversarial Autoencoder and Recurrent Neural Network. The model learns data representations cross different scales with attention mechanisms, on which an enhanced two-resolution anomaly detector is developed for both instances and data blocks. Extensive experiments are performed over three types of datasets to demonstrate the efficacy of our method and its superiority over the state-of-art approaches.

* Accepted by 2019 KDD Workshop on Deep Learning Practice for High-Dimensional Sparse Data 

  Access Paper or Ask Questions

Deep Reinforcement Learning for Optimal Critical Care Pain Management with Morphine using Dueling Double-Deep Q Networks

Apr 25, 2019
Daniel Lopez-Martinez, Patrick Eschenfeldt, Sassan Ostvar, Myles Ingram, Chin Hur, Rosalind Picard

Opioids are the preferred medications for the treatment of pain in the intensive care unit. While undertreatment leads to unrelieved pain and poor clinical outcomes, excessive use of opioids puts patients at risk of experiencing multiple adverse effects. In this work, we present a sequential decision making framework for opioid dosing based on deep reinforcement learning. It provides real-time clinically interpretable dosing recommendations, personalized according to each patient's evolving pain and physiological condition. We focus on morphine, one of the most commonly prescribed opioids. To train and evaluate the model, we used retrospective data from the publicly available MIMIC-3 database. Our results demonstrate that reinforcement learning may be used to aid decision making in the intensive care setting by providing personalized pain management interventions.

* 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 

  Access Paper or Ask Questions

Understanding the Artificial Intelligence Clinician and optimal treatment strategies for sepsis in intensive care

Mar 06, 2019
Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, A. Aldo Faisal

In this document, we explore in more detail our published work (Komorowski, Celi, Badawi, Gordon, & Faisal, 2018) for the benefit of the AI in Healthcare research community. In the above paper, we developed the AI Clinician system, which demonstrated how reinforcement learning could be used to make useful recommendations towards optimal treatment decisions from intensive care data. Since publication a number of authors have reviewed our work (e.g. Abbasi, 2018; Bos, Azoulay, & Martin-Loeches, 2019; Saria, 2018). Given the difference of our framework to previous work, the fact that we are bridging two very different academic communities (intensive care and machine learning) and that our work has impact on a number of other areas with more traditional computer-based approaches (biosignal processing and control, biomedical engineering), we are providing here additional details on our recent publication.

* 13 pages and a number of figures 

  Access Paper or Ask Questions

COCO-CN for Cross-Lingual Image Tagging, Captioning and Retrieval

May 22, 2018
Xirong Li, Xiaoxu Wang, Chaoxi Xu, Weiyu Lan, Qijie Wei, Gang Yang, Jieping Xu

This paper contributes to cross-lingual image annotation and retrieval in terms of data and methods. We propose COCO-CN, a novel dataset enriching MS-COCO with manually written Chinese sentences and tags. For more effective annotation acquisition, we develop a recommendation-assisted collective annotation system, automatically providing an annotator with several tags and sentences deemed to be relevant with respect to the pictorial content. Having 20,342 images annotated with 27,218 Chinese sentences and 70,993 tags, COCO-CN is currently the largest Chinese-English dataset applicable for cross-lingual image tagging, captioning and retrieval. We develop methods per task for effectively learning from cross-lingual resources. Extensive experiments on the multiple tasks justify the viability of our dataset and methods.


  Access Paper or Ask Questions

A Tutorial on Thompson Sampling

Nov 19, 2017
Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen

Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in a manner that must balance between exploiting what is known to maximize immediate performance and investing to accumulate new information that may improve future performance. The algorithm addresses a broad range of problems in a computationally efficient manner and is therefore enjoying wide use. This tutorial covers the algorithm and its application, illustrating concepts through a range of examples, including Bernoulli bandit problems, shortest path problems, dynamic pricing, recommendation, active learning with neural networks, and reinforcement learning in Markov decision processes. Most of these problems involve complex information structures, where information revealed by taking an action informs beliefs about other actions. We will also discuss when and why Thompson sampling is or is not effective and relations to alternative algorithms.


  Access Paper or Ask Questions

Impact of Feature Selection on Micro-Text Classification

Aug 27, 2017
Ankit Vadehra, Maura R. Grossman, Gordon V. Cormack

Social media datasets, especially Twitter tweets, are popular in the field of text classification. Tweets are a valuable source of micro-text (sometimes referred to as "micro-blogs"), and have been studied in domains such as sentiment analysis, recommendation systems, spam detection, clustering, among others. Tweets often include keywords referred to as "Hashtags" that can be used as labels for the tweet. Using tweets encompassing 50 labels, we studied the impact of word versus character-level feature selection and extraction on different learners to solve a multi-class classification task. We show that feature extraction of simple character-level groups performs better than simple word groups and pre-processing methods like normalizing using Porter's Stemming and Part-of-Speech ("POS")-Lemmatization.

* 4 pages, 6 figures 

  Access Paper or Ask Questions

Client-server multi-task learning from distributed datasets

Jan 11, 2010
Francesco Dinuzzo, Gianluigi Pillonetto, Giuseppe De Nicolao

A client-server architecture to simultaneously solve multiple learning tasks from distributed datasets is described. In such architecture, each client is associated with an individual learning task and the associated dataset of examples. The goal of the architecture is to perform information fusion from multiple datasets while preserving privacy of individual data. The role of the server is to collect data in real-time from the clients and codify the information in a common database. The information coded in this database can be used by all the clients to solve their individual learning task, so that each client can exploit the informative content of all the datasets without actually having access to private data of others. The proposed algorithmic framework, based on regularization theory and kernel methods, uses a suitable class of mixed effect kernels. The new method is illustrated through a simulated music recommendation system.


  Access Paper or Ask Questions

MUC-driven Feature Importance Measurement and Adversarial Analysis for Random Forest

Feb 25, 2022
Shucen Ma, Jianqi Shi, Yanhong Huang, Shengchao Qin, Zhe Hou

The broad adoption of Machine Learning (ML) in security-critical fields demands the explainability of the approach. However, the research on understanding ML models, such as Random Forest (RF), is still in its infant stage. In this work, we leverage formal methods and logical reasoning to develop a novel model-specific method for explaining the prediction of RF. Our approach is centered around Minimal Unsatisfiable Cores (MUC) and provides a comprehensive solution for feature importance, covering local and global aspects, and adversarial sample analysis. Experimental results on several datasets illustrate the high quality of our feature importance measurement. We also demonstrate that our adversarial analysis outperforms the state-of-the-art method. Moreover, our method can produce a user-centered report, which helps provide recommendations in real-life applications.


  Access Paper or Ask Questions

Whose Ground Truth? Accounting for Individual and Collective Identities Underlying Dataset Annotation

Dec 08, 2021
Emily Denton, Mark Díaz, Ian Kivlichan, Vinodkumar Prabhakaran, Rachel Rosen

Human annotations play a crucial role in machine learning (ML) research and development. However, the ethical considerations around the processes and decisions that go into building ML datasets has not received nearly enough attention. In this paper, we survey an array of literature that provides insights into ethical considerations around crowdsourced dataset annotation. We synthesize these insights, and lay out the challenges in this space along two layers: (1) who the annotator is, and how the annotators' lived experiences can impact their annotations, and (2) the relationship between the annotators and the crowdsourcing platforms and what that relationship affords them. Finally, we put forth a concrete set of recommendations and considerations for dataset developers at various stages of the ML data pipeline: task formulation, selection of annotators, platform and infrastructure choices, dataset analysis and evaluation, and dataset documentation and release.


  Access Paper or Ask Questions

ePiC: Employing Proverbs in Context as a Benchmark for Abstract Language Understanding

Sep 15, 2021
Sayan Ghosh, Shashank Srivastava

While large language models have shown exciting progress on several NLP benchmarks, evaluating their ability for complex analogical reasoning remains under-explored. Here, we introduce a high-quality crowdsourced dataset of narratives for employing proverbs in context as a benchmark for abstract language understanding. The dataset provides fine-grained annotation of aligned spans between proverbs and narratives, and contains minimal lexical overlaps between narratives and proverbs, ensuring that models need to go beyond surface-level reasoning to succeed. We explore three tasks: (1) proverb recommendation and alignment prediction, (2) narrative generation for a given proverb and topic, and (3) identifying narratives with similar motifs. Our experiments show that neural language models struggle in our tasks compared to humans, and the tasks pose multiple learning challenges.

* Work in progress 

  Access Paper or Ask Questions

<<
293
294
295
296
297
298
299
300
301
302
303
304
305
>>