Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

GLIMG: Global and Local Item Graphs for Top-N Recommender Systems

Aug 18, 2020
Zhuoyi Lin, Lei Feng, Rui Yin, Chi Xu, Chee-Keong Kwoh

Graph-based recommendation models work well for top-N recommender systems due to their capability to capture the potential relationships between entities. However, most of the existing methods only construct a single global item graph shared by all the users and regrettably ignore the diverse tastes between different user groups. Inspired by the success of local models for recommendation, this paper provides the first attempt to investigate multiple local item graphs along with a global item graph for graph-based recommendation models. We argue that recommendation on global and local graphs outperforms that on a single global graph or multiple local graphs. Specifically, we propose a novel graph-based recommendation model named GLIMG (Global and Local IteM Graphs), which simultaneously captures both the global and local user tastes. By integrating the global and local graphs into an adapted semi-supervised learning model, users' preferences on items are propagated globally and locally. Extensive experimental results on real-world datasets show that our proposed method consistently outperforms the state-of-the art counterparts on the top-N recommendation task.

  Access Paper or Ask Questions

Sampling-Decomposable Generative Adversarial Recommender

Nov 02, 2020
Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, Enhong Chen

Recommendation techniques are important approaches for alleviating information overload. Being often trained on implicit user feedback, many recommenders suffer from the sparsity challenge due to the lack of explicitly negative samples. The GAN-style recommenders (i.e., IRGAN) addresses the challenge by learning a generator and a discriminator adversarially, such that the generator produces increasingly difficult samples for the discriminator to accelerate optimizing the discrimination objective. However, producing samples from the generator is very time-consuming, and our empirical study shows that the discriminator performs poor in top-k item recommendation. To this end, a theoretical analysis is made for the GAN-style algorithms, showing that the generator of limit capacity is diverged from the optimal generator. This may interpret the limitation of discriminator's performance. Based on these findings, we propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR). In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling; the efficiency of sample generation is improved with a sampling-decomposable generator, such that each sample can be generated in O(1) with the Vose-Alias method. Interestingly, due to decomposability of sampling, the generator can be optimized with the closed-form solutions in an alternating manner, being different from policy gradient in the GAN-style algorithms. We extensively evaluate the proposed algorithm with five real-world recommendation datasets. The results show that SD-GAR outperforms IRGAN by 12.4% and the SOTA recommender by 10% on average. Moreover, discriminator training can be 20x faster on the dataset with more than 120K items.

* Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS2020) 

  Access Paper or Ask Questions

CARCA: Context and Attribute-Aware Next-Item Recommendation via Cross-Attention

Apr 04, 2022
Ahmed Rashed, Shereen Elsayed, Lars Schmidt-Thieme

In sparse recommender settings, users' context and item attributes play a crucial role in deciding which items to recommend next. Despite that, recent works in sequential and time-aware recommendations usually either ignore both aspects or only consider one of them, limiting their predictive performance. In this paper, we address these limitations by proposing a context and attribute-aware recommender model (CARCA) that can capture the dynamic nature of the user profiles in terms of contextual features and item attributes via dedicated multi-head self-attention blocks that extract profile-level features and predicting item scores. Also, unlike many of the current state-of-the-art sequential item recommendation approaches that use a simple dot-product between the most recent item's latent features and the target items embeddings for scoring, CARCA uses cross-attention between all profile items and the target items to predict their final scores. This cross-attention allows CARCA to harness the correlation between old and recent items in the user profile and their influence on deciding which item to recommend next. Experiments on four real-world recommender system datasets show that the proposed model significantly outperforms all state-of-the-art models in the task of item recommendation and achieving improvements of up to 53% in Normalized Discounted Cumulative Gain (NDCG) and Hit-Ratio. Results also show that CARCA outperformed several state-of-the-art dedicated image-based recommender systems by merely utilizing image attributes extracted from a pre-trained ResNet50 in a black-box fashion.

  Access Paper or Ask Questions

Neural Network Based Next-Song Recommendation

Jun 24, 2016
Kai-Chun Hsu, Szu-Yu Chou, Yi-Hsuan Yang, Tai-Shih Chi

Recently, the next-item/basket recommendation system, which considers the sequential relation between bought items, has drawn attention of researchers. The utilization of sequential patterns has boosted performance on several kinds of recommendation tasks. Inspired by natural language processing (NLP) techniques, we propose a novel neural network (NN) based next-song recommender, CNN-rec, in this paper. Then, we compare the proposed system with several NN based and classic recommendation systems on the next-song recommendation task. Verification results indicate the proposed system outperforms classic systems and has comparable performance with the state-of-the-art system.

* 5 pages, 3 figures, the 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016) 

  Access Paper or Ask Questions

User Preferential Tour Recommendation Based on POI-Embedding Methods

Mar 03, 2021
Ngai Lam Ho, Kwan Hui Lim

Tour itinerary planning and recommendation are challenging tasks for tourists in unfamiliar countries. Many tour recommenders only consider broad POI categories and do not align well with users' preferences and other locational constraints. We propose an algorithm to recommend personalized tours using POI-embedding methods, which provides a finer representation of POI types. Our recommendation algorithm will generate a sequence of POIs that optimizes time and locational constraints, as well as user's preferences based on past trajectories from similar tourists. Our tour recommendation algorithm is modelled as a word embedding model in natural language processing, coupled with an iterative algorithm for generating itineraries that satisfies time constraints. Using a Flickr dataset of 4 cities, preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary, based on measures of recall, precision and F1-scores.

* Accepted to the 26th International Conference on Intelligent User Interfaces (IUI'21), Poster Track 

  Access Paper or Ask Questions

Application of Statistical Relational Learning to Hybrid Recommendation Systems

Jul 04, 2016
Shuo Yang, Mohammed Korayem, Khalifeh AlJadda, Trey Grainger, Sriraam Natarajan

Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current model-based hybrid recommendation systems typically require extensive feature engineering to construct a user profile. Statistical Relational Learning (SRL) provides a straightforward way to combine the two approaches. However, due to the large scale of the data used in real world recommendation systems, little research exists on applying SRL models to hybrid recommendation systems, and essentially none of that research has been applied on real big-data-scale systems. In this paper, we proposed a way to adapt the state-of-the-art in SRL learning approaches to construct a real hybrid recommendation system. Furthermore, in order to satisfy a common requirement in recommendation systems (i.e. that false positives are more undesirable and therefore penalized more harshly than false negatives), our approach can also allow tuning the trade-off between the precision and recall of the system in a principled way. Our experimental results demonstrate the efficiency of our proposed approach as well as its improved performance on recommendation precision.

* Statistical Relational AI 2016 

  Access Paper or Ask Questions

Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation

Jan 23, 2019
Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, Minyi Guo

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

* In Proceedings of The 2019 Web Conference (WWW 2019) 

  Access Paper or Ask Questions

Sequential Recommendation with Self-Attentive Multi-Adversarial Network

May 21, 2020
Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, Ji-Rong Wen

Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability.

  Access Paper or Ask Questions

Personalized Bundle Recommendation in Online Games

Apr 12, 2021
Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao, Changjie Fan, Liang Chen

In business domains, \textit{bundling} is one of the most important marketing strategies to conduct product promotions, which is commonly used in online e-commerce and offline retailers. Existing recommender systems mostly focus on recommending individual items that users may be interested in. In this paper, we target at a practical but less explored recommendation problem named bundle recommendation, which aims to offer a combination of items to users. To tackle this specific recommendation problem in the context of the \emph{virtual mall} in online games, we formalize it as a link prediction problem on a user-item-bundle tripartite graph constructed from the historical interactions, and solve it with a neural network model that can learn directly on the graph-structure data. Extensive experiments on three public datasets and one industrial game dataset demonstrate the effectiveness of the proposed method. Further, the bundle recommendation model has been deployed in production for more than one year in a popular online game developed by Netease Games, and the launch of the model yields more than 60\% improvement on conversion rate of bundles, and a relative improvement of more than 15\% on gross merchandise volume (GMV).

* 8 pages, 10 figures, accepted paper on CIKM 2020 

  Access Paper or Ask Questions