Computers have been used to analyze and create music since they were first introduced in the 1950s and 1960s. Beginning in the late 1990s, the rise of the Internet and large scale platforms for music recommendation and retrieval have made music an increasingly prevalent domain of machine learning and artificial intelligence research. While still nascent, several different approaches have been employed to tackle what may broadly be referred to as "musical intelligence." This article provides a definition of musical intelligence, introduces a taxonomy of its constituent components, and surveys the wide range of AI methods that can be, and have been, brought to bear in its pursuit, with a particular emphasis on machine learning methods.
Hate speech detection on Twitter is critical for applications like controversial event extraction, building AI chatterbots, content recommendation, and sentiment analysis. We define this task as being able to classify a tweet as racist, sexist or neither. The complexity of the natural language constructs makes this task very challenging. We perform extensive experiments with multiple deep learning architectures to learn semantic word embeddings to handle this complexity. Our experiments on a benchmark dataset of 16K annotated tweets show that such deep learning methods outperform state-of-the-art char/word n-gram methods by ~18 F1 points.
This work presents a model for the Tramp Ship Scheduling problem including berth allocation considerations, motivated by a real case of a shipping company. The aim is to determine the travel schedule for each vessel considering multiple docking and multiple time windows at the berths. This work is innovative due to the consideration of both spatial and temporal attributes during the scheduling process. The resulting model is formulated as a mixed-integer linear programming problem, and a heuristic method to deal with multiple vessel schedules is also presented. Numerical experimentation is performed to highlight the benefits of the proposed approach and the applicability of the heuristic. Conclusions and recommendations for further research are provided.
Supervised (linear) embedding models like Wsabie and PSI have proven successful at ranking, recommendation and annotation tasks. However, despite being scalable to large datasets they do not take full advantage of the extra data due to their linear nature, and typically underfit. We propose a new class of models which aim to provide improved performance while retaining many of the benefits of the existing class of embedding models. Our new approach works by iteratively learning a linear embedding model where the next iteration's features and labels are reweighted as a function of the previous iteration. We describe several variants of the family, and give some initial results.
Chatbots are intelligent conversational computer systems designed to mimic human conversation to enable automated online guidance and support. The increased benefits of chatbots led to their wide adoption by many industries in order to provide virtual assistance to customers. Chatbots utilise methods and algorithms from two Artificial Intelligence domains: Natural Language Processing and Machine Learning. However, there are many challenges and limitations in their application. In this survey we review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used. We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
We provide some basic and sensible definitions of different types of digital twins and recommendations on when and how to use them. Following up on our recent publication of the Learning Causal Digital Twin, this article reports on a stochastic formulation and solution of the problem. Structural Vector Autoregressive Model (SVAR) for Causal estimation is recast as a state-space model. Kalman filter (and smoother) is then employed to estimate causal factors in a system of connected machine bearings. The previous neural network algorithm and Kalman Smoother produced very similar results; however, Kalman Filter/Smoother may show better performance for noisy data from industrial IoT sources.
Accurate and efficient product classification is significant for E-commerce applications, as it enables various downstream tasks such as recommendation, retrieval, and pricing. Items often contain textual and visual information, and utilizing both modalities usually outperforms classification utilizing either mode alone. In this paper we describe our methodology and results for the SIGIR eCom Rakuten Data Challenge. We employ a dual attention technique to model image-text relationships using pretrained language and image embeddings. While dual attention has been widely used for Visual Question Answering(VQA) tasks, ours is the first attempt to apply the concept for multimodal classification.
In this paper, we address the problem of dataset quality in the context of Machine Learning (ML)-based critical systems. We briefly analyse the applicability of some existing standards dealing with data and show that the specificities of the ML context are neither properly captured nor taken into ac-count. As a first answer to this concerning situation, we propose a dataset specification and verification process, and apply it on a signal recognition system from the railway domain. In addi-tion, we also give a list of recommendations for the collection and management of datasets. This work is one step towards the dataset engineering process that will be required for ML to be used on safety critical systems.
We propose minimum regret search (MRS), a novel acquisition function for Bayesian optimization. MRS bears similarities with information-theoretic approaches such as entropy search (ES). However, while ES aims in each query at maximizing the information gain with respect to the global maximum, MRS aims at minimizing the expected simple regret of its ultimate recommendation for the optimum. While empirically ES and MRS perform similar in most of the cases, MRS produces fewer outliers with high simple regret than ES. We provide empirical results both for a synthetic single-task optimization problem as well as for a simulated multi-task robotic control problem.
Ordinal data is omnipresent in almost all multiuser-generated feedback - questionnaires, preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted Boltzmann machines (RBMs). In particular, we present the model architecture, learning and inference procedures for both vector-variate and matrix-variate ordinal data. We show that our model is able to capture latent opinion profile of citizens around the world, and is competitive against state-of-art collaborative filtering techniques on large-scale public datasets. The model thus has the potential to extend application of RBMs to diverse domains such as recommendation systems, product reviews and expert assessments.