Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Overview of PicTropes, a film trope dataset

Oct 26, 2018
Rubén H. García-Ortega, Juan J. Merelo-Guervós, Pablo García Sánchez, Gad Pitaru

From the database DBTropes.org, we have created a dataset of films and the tropes that they use, which we have called PicTropes. In this report we provide the descriptive analysis and a further discussion on the dataset PicTropes: The extracted features will help us decide the best values for a future recommendation system and content generator, whereas the analysis of the distribution functions that fit the best will help us interpret the relation between the films and the tropes that were found inside them. Additionally, we provide rankings of the top-25 tropes and films, which will help us discuss and formulate questions to guide future extensions of the PicTropes dataset.


  Access Paper or Ask Questions

Relational Models

Sep 11, 2016
Volker Tresp, Maximilian Nickel

We provide a survey on relational models. Relational models describe complete networked {domains by taking into account global dependencies in the data}. Relational models can lead to more accurate predictions if compared to non-relational machine learning approaches. Relational models typically are based on probabilistic graphical models, e.g., Bayesian networks, Markov networks, or latent variable models. Relational models have applications in social networks analysis, the modeling of knowledge graphs, bioinformatics, recommendation systems, natural language processing, medical decision support, and linked data.


  Access Paper or Ask Questions

Fast Differentially Private Matrix Factorization

May 07, 2015
Ziqi Liu, Yu-Xiang Wang, Alexander J. Smola

Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC.


  Access Paper or Ask Questions

Exploration of Machine Learning Classification Models Used for Behavioral Biometrics Authentication

Apr 19, 2022
Sara Kokal, Laura Pryor, Rushit Dave

Mobile devices have been manufactured and enhanced at growing rates in the past decades. While this growth has significantly evolved the capability of these devices, their security has been falling behind. This contrast in development between capability and security of mobile devices is a significant problem with the sensitive information of the public at risk. Continuing the previous work in this field, this study identifies key Machine Learning algorithms currently being used for behavioral biometric mobile authentication schemes and aims to provide a comprehensive review of these algorithms when used with touch dynamics and phone movement. Throughout this paper the benefits, limitations, and recommendations for future work will be discussed.


  Access Paper or Ask Questions

Human Judgement as a Compass to Navigate Automatic Metrics for Formality Transfer

Apr 15, 2022
Huiyuan Lai, Jiali Mao, Antonio Toral, Malvina Nissim

Although text style transfer has witnessed rapid development in recent years, there is as yet no established standard for evaluation, which is performed using several automatic metrics, lacking the possibility of always resorting to human judgement. We focus on the task of formality transfer, and on the three aspects that are usually evaluated: style strength, content preservation, and fluency. To cast light on how such aspects are assessed by common and new metrics, we run a human-based evaluation and perform a rich correlation analysis. We are then able to offer some recommendations on the use of such metrics in formality transfer, also with an eye to their generalisability (or not) to related tasks.

* Accepted to HumEval 2022 

  Access Paper or Ask Questions

Supporting Massive DLRM Inference Through Software Defined Memory

Nov 08, 2021
Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Rampersad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen, Shishir Juluri, Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere, Krishnakumar Nair, Maxim Naumov, Chris Peterson, Mikhail Smelyanskiy, Vijay Rao

Deep Learning Recommendation Models (DLRM) are widespread, account for a considerable data center footprint, and grow by more than 1.5x per year. With model size soon to be in terabytes range, leveraging Storage ClassMemory (SCM) for inference enables lower power consumption and cost. This paper evaluates the major challenges in extending the memory hierarchy to SCM for DLRM, and presents different techniques to improve performance through a Software Defined Memory. We show how underlying technologies such as Nand Flash and 3DXP differentiate, and relate to real world scenarios, enabling from 5% to 29% power savings.

* 14 pages, 5 figures 

  Access Paper or Ask Questions

A system for information extraction from scientific texts in Russian

Sep 14, 2021
Elena Bruches, Anastasia Mezentseva, Tatiana Batura

In this paper, we present a system for information extraction from scientific texts in the Russian language. The system performs several tasks in an end-to-end manner: term recognition, extraction of relations between terms, and term linking with entities from the knowledge base. These tasks are extremely important for information retrieval, recommendation systems, and classification. The advantage of the implemented methods is that the system does not require a large amount of labeled data, which saves time and effort for data labeling and therefore can be applied in low- and mid-resource settings. The source code is publicly available and can be used for different research purposes.


  Access Paper or Ask Questions

Do Transformer Modifications Transfer Across Implementations and Applications?

Feb 23, 2021
Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael Matena, Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus, Adam Roberts, Colin Raffel

The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these modifications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer variants we found beneficial were either developed in the same codebase that we used or are relatively minor changes. We conjecture that performance improvements may strongly depend on implementation details and correspondingly make some recommendations for improving the generality of experimental results.


  Access Paper or Ask Questions

MICROS: Mixed-Initiative ConveRsatiOnal Systems Workshop

Jan 25, 2021
Ida Mele, Cristina Ioana Muntean, Mohammad Aliannejadi, Nikos Voskarides

The 1st edition of the workshop on Mixed-Initiative ConveRsatiOnal Systems ([email protected]) aims at investigating and collecting novel ideas and contributions in the field of conversational systems. Oftentimes, the users fulfill their information need using smartphones and home assistants. This has revolutionized the way users access online information, thus posing new challenges compared to traditional search and recommendation. The first edition of MICROS will have a particular focus on mixed-initiative conversational systems. Indeed, conversational systems need to be proactive, proposing not only answers but also possible interpretations for ambiguous or vague requests.

* ECIR 2021 workshop 

  Access Paper or Ask Questions

<<
269
270
271
272
273
274
275
276
277
278
279
280
281
>>