Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Recommendation Chart of Domains for Cross-Domain Sentiment Analysis:Findings of A 20 Domain Study

Apr 09, 2020
Akash Sheoran, Diptesh Kanojia, Aditya Joshi, Pushpak Bhattacharyya

Cross-domain sentiment analysis (CDSA) helps to address the problem of data scarcity in scenarios where labelled data for a domain (known as the target domain) is unavailable or insufficient. However, the decision to choose a domain (known as the source domain) to leverage from is, at best, intuitive. In this paper, we investigate text similarity metrics to facilitate source domain selection for CDSA. We report results on 20 domains (all possible pairs) using 11 similarity metrics. Specifically, we compare CDSA performance with these metrics for different domain-pairs to enable the selection of a suitable source domain, given a target domain. These metrics include two novel metrics for evaluating domain adaptability to help source domain selection of labelled data and utilize word and sentence-based embeddings as metrics for unlabelled data. The goal of our experiments is a recommendation chart that gives the K best source domains for CDSA for a given target domain. We show that the best K source domains returned by our similarity metrics have a precision of over 50%, for varying values of K.

* 12th Edition of Language Resources and Evaluation Conference (LREC 2020) 

  Access Paper or Ask Questions

Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer

May 02, 2021
Zhiwei Liu, Ziwei Fan, Yu Wang, Philip S. Yu

Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to design effective sequence encoders, \textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, \textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for \textbf{A}ugmenting \textbf{S}equential \textbf{Re}commendation with \textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on \url{https://github.com/DyGRec/ASReP}.

* Accepted by SIGIR 2021 

  Access Paper or Ask Questions

FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging

Sep 29, 2021
Karim Lekadir, Richard Osuala, Catherine Gallin, Noussair Lazrak, Kaisar Kushibar, Gianna Tsakou, Susanna Aussó, Leonor Cerdá Alberich, Kostas Marias, Manolis Tsiknakis, Sara Colantonio, Nickolas Papanikolaou, Zohaib Salahuddin, Henry C Woodruff, Philippe Lambin, Luis Martí-Bonmatí

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.

* 47 pages 

  Access Paper or Ask Questions

Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation

Jun 07, 2021
Sanshi Yu, Zhuoxuan Jiang, Dong-Dong Chen, Shanshan Feng, Dongsheng Li, Qi Liu, Jinfeng Yi

Recently, a new form of online shopping becomes more and more popular, which combines live streaming with E-Commerce activity. The streamers introduce products and interact with their audiences, and hence greatly improve the performance of selling products. Despite of the successful applications in industries, the live stream E-commerce has not been well studied in the data science community. To fill this gap, we investigate this brand-new scenario and collect a real-world Live Stream E-Commerce (LSEC) dataset. Different from conventional E-commerce activities, the streamers play a pivotal role in the LSEC events. Hence, the key is to make full use of rich interaction information among streamers, users, and products. We first conduct data analysis on the tripartite interaction data and quantify the streamer's influence on users' purchase behavior. Based on the analysis results, we model the tripartite information as a heterogeneous graph, which can be decomposed to multiple bipartite graphs in order to better capture the influence. We propose a novel Live Stream E-Commerce Graph Neural Network framework (LSEC-GNN) to learn the node representations of each bipartite graph, and further design a multi-task learning approach to improve product recommendation. Extensive experiments on two real-world datasets with different scales show that our method can significantly outperform various baseline approaches.

* To appear in KDD'21 ADS 

  Access Paper or Ask Questions

Quaternion-Based Self-Attentive Long Short-Term User Preference Encoding for Recommendation

Aug 31, 2020
Thanh Tran, Di You, Kyumin Lee

Quaternion space has brought several benefits over the traditional Euclidean space: Quaternions (i) consist of a real and three imaginary components, encouraging richer representations; (ii) utilize Hamilton product which better encodes the inter-latent interactions across multiple Quaternion components; and (iii) result in a model with smaller degrees of freedom and less prone to overfitting. Unfortunately, most of the current recommender systems rely on real-valued representations in Euclidean space to model either user's long-term or short-term interests. In this paper, we fully utilize Quaternion space to model both user's long-term and short-term preferences. We first propose a QUaternion-based self-Attentive Long term user Encoding (QUALE) to study the user's long-term intents. Then, we propose a QUaternion-based self-Attentive Short term user Encoding (QUASE) to learn the user's short-term interests. To enhance our models' capability, we propose to fuse QUALE and QUASE into one model, namely QUALSE, by using a Quaternion-based gating mechanism. We further develop Quaternion-based Adversarial learning along with the Bayesian Personalized Ranking (QABPR) to improve our model's robustness. Extensive experiments on six real-world datasets show that our fused QUALSE model outperformed 11 state-of-the-art baselines, improving 8.43% at [email protected] and 10.27% at [email protected] on average compared with the best baseline.

* CIKM 2020 

  Access Paper or Ask Questions

Learning to Collaborate in Multi-Module Recommendation via Multi-Agent Reinforcement Learning without Communication

Aug 29, 2020
Xu He, Bo An, Yanghua Li, Haikai Chen, Rundong Wang, Xinrun Wang, Runsheng Yu, Xin Li, Zhirong Wang

With the rise of online e-commerce platforms, more and more customers prefer to shop online. To sell more products, online platforms introduce various modules to recommend items with different properties such as huge discounts. A web page often consists of different independent modules. The ranking policies of these modules are decided by different teams and optimized individually without cooperation, which might result in competition between modules. Thus, the global policy of the whole page could be sub-optimal. In this paper, we propose a novel multi-agent cooperative reinforcement learning approach with the restriction that different modules cannot communicate. Our contributions are three-fold. Firstly, inspired by a solution concept in game theory named correlated equilibrium, we design a signal network to promote cooperation of all modules by generating signals (vectors) for different modules. Secondly, an entropy-regularized version of the signal network is proposed to coordinate agents' exploration of the optimal global policy. Furthermore, experiments based on real-world e-commerce data demonstrate that our algorithm obtains superior performance over baselines.


  Access Paper or Ask Questions

SAR-Net: A Scenario-Aware Ranking Network for PersonalizedFair Recommendation in Hundreds of Travel Scenarios

Oct 13, 2021
Qijie Shen, Wanjie Tao, Jing Zhang, Hong Wen, Zulong Chen, Quan Lu

The travel marketing platform of Alibaba serves an indispensable role for hundreds of different travel scenarios from Fliggy, Taobao, Alipay apps, etc. To provide personalized recommendation service for users visiting different scenarios, there are two critical issues to be carefully addressed. First, since the traffic characteristics of different scenarios, it is very challenging to train a unified model to serve all. Second, during the promotion period, the exposure of some specific items will be re-weighted due to manual intervention, resulting in biased logs, which will degrade the ranking model trained using these biased data. In this paper, we propose a novel Scenario-Aware Ranking Network (SAR-Net) to address these issues. SAR-Net harvests the abundant data from different scenarios by learning users' cross-scenario interests via two specific attention modules, which leverage the scenario features and item features to modulate the user behavior features, respectively. Then, taking the encoded features of previous module as input, a scenario-specific linear transformation layer is adopted to further extract scenario-specific features, followed by two groups of debias expert networks, i.e., scenario-specific experts and scenario-shared experts. They output intermediate results independently, which are further fused into the final result by a multi-scenario gating module. In addition, to mitigate the data fairness issue caused by manual intervention, we propose the concept of Fairness Coefficient (FC) to measures the importance of individual sample and use it to reweigh the prediction in the debias expert networks. Experiments on an offline dataset covering over 80 million users and 1.55 million travel items and an online A/B test demonstrate the effectiveness of our SAR-Net and its superiority over state-of-the-art methods.

* Accepted at CIKM 2021 

  Access Paper or Ask Questions

Are Quantum Computers Practical Yet? A Case for Feature Selection in Recommender Systems using Tensor Networks

May 12, 2022
Artyom Nikitin, Andrei Chertkov, Rafael Ballester-Ripoll, Ivan Oseledets, Evgeny Frolov

Collaborative filtering models generally perform better than content-based filtering models and do not require careful feature engineering. However, in the cold-start scenario collaborative information may be scarce or even unavailable, whereas the content information may be abundant, but also noisy and expensive to acquire. Thus, selection of particular features that improve cold-start recommendations becomes an important and non-trivial task. In the recent approach by Nembrini et al., the feature selection is driven by the correlational compatibility between collaborative and content-based models. The problem is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) which, due to its NP-hard complexity, is solved using Quantum Annealing on a quantum computer provided by D-Wave. Inspired by the reported results, we contend the idea that current quantum annealers are superior for this problem and instead focus on classical algorithms. In particular, we tackle QUBO via TTOpt, a recently proposed black-box optimizer based on tensor networks and multilinear algebra. We show the computational feasibility of this method for large problems with thousands of features, and empirically demonstrate that the solutions found are comparable to the ones obtained with D-Wave across all examined datasets.

* Added affiliation. Fixed table references 

  Access Paper or Ask Questions

FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Future Medical Imaging

Sep 21, 2021
Karim Lekadir, Richard Osuala, Catherine Gallin, Noussair Lazrak, Kaisar Kushibar, Gianna Tsakou, Susanna Aussó, Leonor Cerdá Alberich, Konstantinos Marias, Manolis Tskinakis, Sara Colantonio, Nickolas Papanikolaou, Zohaib Salahuddin, Henry C Woodruff, Philippe Lambin, Luis Martí-Bonmatí

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.

* 46 pages, v2, removed typo 

  Access Paper or Ask Questions

<<
257
258
259
260
261
262
263
264
265
266
267
268
269
>>