Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Dressing as a Whole: Outfit Compatibility Learning Based on Node-wise Graph Neural Networks

Feb 21, 2019
Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, Liang Wang

With the rapid development of fashion market, the customers' demands of customers for fashion recommendation are rising. In this paper, we aim to investigate a practical problem of fashion recommendation by answering the question "which item should we select to match with the given fashion items and form a compatible outfit". The key to this problem is to estimate the outfit compatibility. Previous works which focus on the compatibility of two items or represent an outfit as a sequence fail to make full use of the complex relations among items in an outfit. To remedy this, we propose to represent an outfit as a graph. In particular, we construct a Fashion Graph, where each node represents a category and each edge represents interaction between two categories. Accordingly, each outfit can be represented as a subgraph by putting items into their corresponding category nodes. To infer the outfit compatibility from such a graph, we propose Node-wise Graph Neural Networks (NGNN) which can better model node interactions and learn better node representations. In NGNN, the node interaction on each edge is different, which is determined by parameters correlated to the two connected nodes. An attention mechanism is utilized to calculate the outfit compatibility score with learned node representations. NGNN can not only be used to model outfit compatibility from visual or textual modality but also from multiple modalities. We conduct experiments on two tasks: (1) Fill-in-the-blank: suggesting an item that matches with existing components of outfit; (2) Compatibility prediction: predicting the compatibility scores of given outfits. Experimental results demonstrate the great superiority of our proposed method over others.

* 11 pages, accepted by the 2019 World Wide Web Conference (WWW-2019) 

  Access Paper or Ask Questions

Efficient differentially private learning improves drug sensitivity prediction

Jul 05, 2017
Antti Honkela, Mrinal Das, Arttu Nieminen, Onur Dikmen, Samuel Kaski

Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if the other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information on which the predictions are based is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual patients cannot be distinguished. However, differentially private learning with current methods does not improve predictions with feasible data sizes and dimensionalities. Here we show that useful predictors can be learned under powerful differential privacy guarantees, and even from moderately-sized data sets, by demonstrating significant improvements with a new robust private regression method in the accuracy of private drug sensitivity prediction. The method combines two key properties not present even in recent proposals, which can be generalised to other predictors: we prove it is asymptotically consistently and efficiently private, and demonstrate that it performs well on finite data. Good finite data performance is achieved by limiting the sharing of private information by decreasing the dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy. As already the simple-to-implement method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications in many fields, such as mobile sensing and social media, in addition to the badly needed precision medicine solutions.

* Biology Direct (2018) 13:1 
* 14 pages + 13 pages supplementary information, 3 + 3 figures 

  Access Paper or Ask Questions

Actionable Conversational Quality Indicators for Improving Task-Oriented Dialog Systems

Sep 22, 2021
Michael Higgins, Dominic Widdows, Chris Brew, Gwen Christian, Andrew Maurer, Matthew Dunn, Sujit Mathi, Akshay Hazare, George Bonev, Beth Ann Hockey, Kristen Howell, Joe Bradley

Automatic dialog systems have become a mainstream part of online customer service. Many such systems are built, maintained, and improved by customer service specialists, rather than dialog systems engineers and computer programmers. As conversations between people and machines become commonplace, it is critical to understand what is working, what is not, and what actions can be taken to reduce the frequency of inappropriate system responses. These analyses and recommendations need to be presented in terms that directly reflect the user experience rather than the internal dialog processing. This paper introduces and explains the use of Actionable Conversational Quality Indicators (ACQIs), which are used both to recognize parts of dialogs that can be improved, and to recommend how to improve them. This combines benefits of previous approaches, some of which have focused on producing dialog quality scoring while others have sought to categorize the types of errors the dialog system is making. We demonstrate the effectiveness of using ACQIs on LivePerson internal dialog systems used in commercial customer service applications, and on the publicly available CMU LEGOv2 conversational dataset (Raux et al. 2005). We report on the annotation and analysis of conversational datasets showing which ACQIs are important to fix in various situations. The annotated datasets are then used to build a predictive model which uses a turn-based vector embedding of the message texts and achieves an 79% weighted average f1-measure at the task of finding the correct ACQI for a given conversation. We predict that if such a model worked perfectly, the range of potential improvement actions a bot-builder must consider at each turn could be reduced by an average of 81%.

  Access Paper or Ask Questions

Analysis of Hyper-Parameters for Small Games: Iterations or Epochs in Self-Play?

Mar 12, 2020
Hui Wang, Michael Emmerich, Mike Preuss, Aske Plaat

The landmark achievements of AlphaGo Zero have created great research interest into self-play in reinforcement learning. In self-play, Monte Carlo Tree Search is used to train a deep neural network, that is then used in tree searches. Training itself is governed by many hyperparameters.There has been surprisingly little research on design choices for hyper-parameter values and loss-functions, presumably because of the prohibitive computational cost to explore the parameter space. In this paper, we investigate 12 hyper-parameters in an AlphaZero-like self-play algorithm and evaluate how these parameters contribute to training. We use small games, to achieve meaningful exploration with moderate computational effort. The experimental results show that training is highly sensitive to hyper-parameter choices. Through multi-objective analysis we identify 4 important hyper-parameters to further assess. To start, we find surprising results where too much training can sometimes lead to lower performance. Our main result is that the number of self-play iterations subsumes MCTS-search simulations, game-episodes, and training epochs. The intuition is that these three increase together as self-play iterations increase, and that increasing them individually is sub-optimal. A consequence of our experiments is a direct recommendation for setting hyper-parameter values in self-play: the overarching outer-loop of self-play iterations should be maximized, in favor of the three inner-loop hyper-parameters, which should be set at lower values. A secondary result of our experiments concerns the choice of optimization goals, for which we also provide recommendations.

  Access Paper or Ask Questions

Stable Prediction on Graphs with Agnostic Distribution Shift

Oct 08, 2021
Shengyu Zhang, Kun Kuang, Jiezhong Qiu, Jin Yu, Zhou Zhao, Hongxia Yang, Zhongfei Zhang, Fei Wu

Graph is a flexible and effective tool to represent complex structures in practice and graph neural networks (GNNs) have been shown to be effective on various graph tasks with randomly separated training and testing data. In real applications, however, the distribution of training graph might be different from that of the test one (e.g., users' interactions on the user-item training graph and their actual preference on items, i.e., testing environment, are known to have inconsistencies in recommender systems). Moreover, the distribution of test data is always agnostic when GNNs are trained. Hence, we are facing the agnostic distribution shift between training and testing on graph learning, which would lead to unstable inference of traditional GNNs across different test environments. To address this problem, we propose a novel stable prediction framework for GNNs, which permits both locally and globally stable learning and prediction on graphs. In particular, since each node is partially represented by its neighbors in GNNs, we propose to capture the stable properties for each node (locally stable) by re-weighting the information propagation/aggregation processes. For global stability, we propose a stable regularizer that reduces the training losses on heterogeneous environments and thus warping the GNNs to generalize well. We conduct extensive experiments on several graph benchmarks and a noisy industrial recommendation dataset that is collected from 5 consecutive days during a product promotion festival. The results demonstrate that our method outperforms various SOTA GNNs for stable prediction on graphs with agnostic distribution shift, including shift caused by node labels and attributes.

* 11 pages, 6 figures 

  Access Paper or Ask Questions

Fairness-Aware Online Personalization

Jul 30, 2020
G Roshan Lal, Sahin Cem Geyik, Krishnaram Kenthapadi

Decision making in crucial applications such as lending, hiring, and college admissions has witnessed increasing use of algorithmic models and techniques as a result of a confluence of factors such as ubiquitous connectivity, ability to collect, aggregate, and process large amounts of fine-grained data using cloud computing, and ease of access to applying sophisticated machine learning models. Quite often, such applications are powered by search and recommendation systems, which in turn make use of personalized ranking algorithms. At the same time, there is increasing awareness about the ethical and legal challenges posed by the use of such data-driven systems. Researchers and practitioners from different disciplines have recently highlighted the potential for such systems to discriminate against certain population groups, due to biases in the datasets utilized for learning their underlying recommendation models. We present a study of fairness in online personalization settings involving the ranking of individuals. Starting from a fair warm-start machine-learned model, we first demonstrate that online personalization can cause the model to learn to act in an unfair manner if the user is biased in his/her responses. For this purpose, we construct a stylized model for generating training data with potentially biased features as well as potentially biased labels and quantify the extent of bias that is learned by the model when the user responds in a biased manner as in many real-world scenarios. We then formulate the problem of learning personalized models under fairness constraints and present a regularization based approach for mitigating biases in machine learning. We demonstrate the efficacy of our approach through extensive simulations with different parameter settings.

  Access Paper or Ask Questions

Leveraging the Power of Place: A Data-Driven Decision Helper to Improve the Location Decisions of Economic Immigrants

Jul 27, 2020
Jeremy Ferwerda, Nicholas Adams-Cohen, Kirk Bansak, Jennifer Fei, Duncan Lawrence, Jeremy M. Weinstein, Jens Hainmueller

A growing number of countries have established programs to attract immigrants who can contribute to their economy. Research suggests that an immigrant's initial arrival location plays a key role in shaping their economic success. Yet immigrants currently lack access to personalized information that would help them identify optimal destinations. Instead, they often rely on availability heuristics, which can lead to the selection of sub-optimal landing locations, lower earnings, elevated outmigration rates, and concentration in the most well-known locations. To address this issue and counteract the effects of cognitive biases and limited information, we propose a data-driven decision helper that draws on behavioral insights, administrative data, and machine learning methods to inform immigrants' location decisions. The decision helper provides personalized location recommendations that reflect immigrants' preferences as well as data-driven predictions of the locations where they maximize their expected earnings given their profile. We illustrate the potential impact of our approach using backtests conducted with administrative data that links landing data of recent economic immigrants from Canada's Express Entry system with their earnings retrieved from tax records. Simulations across various scenarios suggest that providing location recommendations to incoming economic immigrants can increase their initial earnings and lead to a mild shift away from the most populous landing destinations. Our approach can be implemented within existing institutional structures at minimal cost, and offers governments an opportunity to harness their administrative data to improve outcomes for economic immigrants.

* 51 pages (including appendix), 13 figures. Immigration Policy Lab (IPL) Working Paper Series, Working Paper No. 20-06 

  Access Paper or Ask Questions

Detecting Mammals in UAV Images: Best Practices to address a substantially Imbalanced Dataset with Deep Learning

Jun 29, 2018
Benjamin Kellenberger, Diego Marcos, Devis Tuia

Knowledge over the number of animals in large wildlife reserves is a vital necessity for park rangers in their efforts to protect endangered species. Manual animal censuses are dangerous and expensive, hence Unmanned Aerial Vehicles (UAVs) with consumer level digital cameras are becoming a popular alternative tool to estimate livestock. Several works have been proposed that semi-automatically process UAV images to detect animals, of which some employ Convolutional Neural Networks (CNNs), a recent family of deep learning algorithms that proved very effective in object detection in large datasets from computer vision. However, the majority of works related to wildlife focuses only on small datasets (typically subsets of UAV campaigns), which might be detrimental when presented with the sheer scale of real study areas for large mammal census. Methods may yield thousands of false alarms in such cases. In this paper, we study how to scale CNNs to large wildlife census tasks and present a number of recommendations to train a CNN on a large UAV dataset. We further introduce novel evaluation protocols that are tailored to censuses and model suitability for subsequent human verification of detections. Using our recommendations, we are able to train a CNN reducing the number of false positives by an order of magnitude compared to previous state-of-the-art. Setting the requirements at 90% recall, our CNN allows to reduce the amount of data required for manual verification by three times, thus making it possible for rangers to screen all the data acquired efficiently and to detect almost all animals in the reserve automatically.

  Access Paper or Ask Questions

Data Science in Service of Performing Arts: Applying Machine Learning to Predicting Audience Preferences

Sep 30, 2016
Jacob Abernethy, Cyrus Anderson, Alex Chojnacki, Chengyu Dai, John Dryden, Eric Schwartz, Wenbo Shen, Jonathan Stroud, Laura Wendlandt, Sheng Yang, Daniel Zhang

Performing arts organizations aim to enrich their communities through the arts. To do this, they strive to match their performance offerings to the taste of those communities. Success relies on understanding audience preference and predicting their behavior. Similar to most e-commerce or digital entertainment firms, arts presenters need to recommend the right performance to the right customer at the right time. As part of the Michigan Data Science Team (MDST), we partnered with the University Musical Society (UMS), a non-profit performing arts presenter housed in the University of Michigan, Ann Arbor. We are providing UMS with analysis and business intelligence, utilizing historical individual-level sales data. We built a recommendation system based on collaborative filtering, gaining insights into the artistic preferences of customers, along with the similarities between performances. To better understand audience behavior, we used statistical methods from customer-base analysis. We characterized customer heterogeneity via segmentation, and we modeled customer cohorts to understand and predict ticket purchasing patterns. Finally, we combined statistical modeling with natural language processing (NLP) to explore the impact of wording in program descriptions. These ongoing efforts provide a platform to launch targeted marketing campaigns, helping UMS carry out its mission by allocating its resources more efficiently. Celebrating its 138th season, UMS is a 2014 recipient of the National Medal of Arts, and it continues to enrich communities by connecting world-renowned artists with diverse audiences, especially students in their formative years. We aim to contribute to that mission through data science and customer analytics.

* Presented at the Data For Good Exchange 2016 

  Access Paper or Ask Questions

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction

Mar 26, 2020
Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, Yong Yu

Learning effective feature interactions is crucial for click-through rate (CTR) prediction tasks in recommender systems. In most of the existing deep learning models, feature interactions are either manually designed or simply enumerated. However, enumerating all feature interactions brings large memory and computation cost. Even worse, useless interactions may introduce unnecessary noise and complicate the training process. In this work, we propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS). AutoFIS can automatically identify all the important feature interactions for factorization models with just the computational cost equivalent to training the target model to convergence. In the \emph{search stage}, instead of searching over a discrete set of candidate feature interactions, we relax the choices to be continuous by introducing the architecture parameters. By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model. In the \emph{re-train stage}, we keep the architecture parameters serving as an attention unit to further boost the performance. Offline experiments on three large-scale datasets (two public benchmarks, one private) demonstrate that the proposed AutoFIS can significantly improve various FM based models. AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service, where a 10-day online A/B test demonstrated that AutoFIS improved the DeepFM model by 20.3\% and 20.1\% in terms of CTR and CVR respectively.

  Access Paper or Ask Questions