Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

News Session-Based Recommendations using Deep Neural Networks

Sep 17, 2018
Gabriel de Souza P. Moreira, Felipe Ferreira, Adilson Marques da Cunha

News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.

* Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. 

  Access Paper or Ask Questions

Causal Disentanglement with Network Information for Debiased Recommendations

Apr 14, 2022
Paras Sheth, Ruocheng Guo, Lu Cheng, Huan Liu, K. Selçuk Candan

Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them. On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of \textit{causal disentanglement} which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.

  Access Paper or Ask Questions

Context-Aware Drive-thru Recommendation Service at Fast Food Restaurants

Oct 13, 2020
Luyang Wang, Kai Huang, Jiao Wang, Shengsheng Huang, Jason Dai, Yue Zhuang

Drive-thru is a popular sales channel in the fast food industry where consumers can make food purchases without leaving their cars. Drive-thru recommendation systems allow restaurants to display food recommendations on the digital menu board as guests are making their orders. Popular recommendation models in eCommerce scenarios rely on user attributes (such as user profiles or purchase history) to generate recommendations, while such information is hard to obtain in the drive-thru use case. Thus, in this paper, we propose a new recommendation model Transformer Cross Transformer (TxT), which exploits the guest order behavior and contextual features (such as location, time, and weather) using Transformer encoders for drive-thru recommendations. Empirical results show that our TxT model achieves superior results in Burger King's drive-thru production environment compared with existing recommendation solutions. In addition, we implement a unified system to run end-to-end big data analytics and deep learning workloads on the same cluster. We find that in practice, maintaining a single big data cluster for the entire pipeline is more efficient and cost-saving. Our recommendation system is not only beneficial for drive-thru scenarios, and it can also be generalized to other customer interaction channels.

* 9 pages 

  Access Paper or Ask Questions

Top-N Recommendation with Novel Rank Approximation

Feb 26, 2016
Zhao Kang, Qiang Cheng

The importance of accurate recommender systems has been widely recognized by academia and industry. However, the recommendation quality is still rather low. Recently, a linear sparse and low-rank representation of the user-item matrix has been applied to produce Top-N recommendations. This approach uses the nuclear norm as a convex relaxation for the rank function and has achieved better recommendation accuracy than the state-of-the-art methods. In the past several years, solving rank minimization problems by leveraging nonconvex relaxations has received increasing attention. Some empirical results demonstrate that it can provide a better approximation to original problems than convex relaxation. In this paper, we propose a novel rank approximation to enhance the performance of Top-N recommendation systems, where the approximation error is controllable. Experimental results on real data show that the proposed rank approximation improves the Top-$N$ recommendation accuracy substantially.

* SDM 2016. arXiv admin note: text overlap with arXiv:1601.04800 

  Access Paper or Ask Questions

Fairness-aware Personalized Ranking Recommendation via Adversarial Learning

Mar 14, 2021
Ziwei Zhu, Jianling Wang, James Caverlee

Recommendation algorithms typically build models based on historical user-item interactions (e.g., clicks, likes, or ratings) to provide a personalized ranked list of items. These interactions are often distributed unevenly over different groups of items due to varying user preferences. However, we show that recommendation algorithms can inherit or even amplify this imbalanced distribution, leading to unfair recommendations to item groups. Concretely, we formalize the concepts of ranking-based statistical parity and equal opportunity as two measures of fairness in personalized ranking recommendation for item groups. Then, we empirically show that one of the most widely adopted algorithms -- Bayesian Personalized Ranking -- produces unfair recommendations, which motivates our effort to propose the novel fairness-aware personalized ranking model. The debiased model is able to improve the two proposed fairness metrics while preserving recommendation performance. Experiments on three public datasets show strong fairness improvement of the proposed model versus state-of-the-art alternatives. This is paper is an extended and reorganized version of our SIGIR 2020~\cite{zhu2020measuring} paper. In this paper, we re-frame the studied problem as `item recommendation fairness' in personalized ranking recommendation systems, and provide more details about the training process of the proposed model and details of experiment setup.

* 11 pages, 11 figures, an extended version of a conference published paper 

  Access Paper or Ask Questions

RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising

Sep 14, 2018
David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, Alexandros Karatzoglou

Recommender Systems are becoming ubiquitous in many settings and take many forms, from product recommendation in e-commerce stores, to query suggestions in search engines, to friend recommendation in social networks. Current research directions which are largely based upon supervised learning from historical data appear to be showing diminishing returns with a lot of practitioners report a discrepancy between improvements in offline metrics for supervised learning and the online performance of the newly proposed models. One possible reason is that we are using the wrong paradigm: when looking at the long-term cycle of collecting historical performance data, creating a new version of the recommendation model, A/B testing it and then rolling it out. We see that there a lot of commonalities with the reinforcement learning (RL) setup, where the agent observes the environment and acts upon it in order to change its state towards better states (states with higher rewards). To this end we introduce RecoGym, an RL environment for recommendation, which is defined by a model of user traffic patterns on e-commerce and the users response to recommendations on the publisher websites. We believe that this is an important step forward for the field of recommendation systems research, that could open up an avenue of collaboration between the recommender systems and reinforcement learning communities and lead to better alignment between offline and online performance metrics.

* Accepted at the REVEAL workshop at the Twelfth ACM Conference on Recommender Systems (RecSys '18), October 2--7, 2018, Vancouver, BC, Canada 

  Access Paper or Ask Questions

The emergence of Explainability of Intelligent Systems: Delivering Explainable and Personalised Recommendations for Energy Efficiency

Oct 26, 2020
Christos Sardianos, Iraklis Varlamis, Christos Chronis, George Dimitrakopoulos, Abdullah Alsalemi, Yassine Himeur, Faycal Bensaali, Abbes Amira

The recent advances in artificial intelligence namely in machine learning and deep learning, have boosted the performance of intelligent systems in several ways. This gave rise to human expectations, but also created the need for a deeper understanding of how intelligent systems think and decide. The concept of explainability appeared, in the extent of explaining the internal system mechanics in human terms. Recommendation systems are intelligent systems that support human decision making, and as such, they have to be explainable in order to increase user trust and improve the acceptance of recommendations. In this work, we focus on a context-aware recommendation system for energy efficiency and develop a mechanism for explainable and persuasive recommendations, which are personalized to user preferences and habits. The persuasive facts either emphasize on the economical saving prospects (Econ) or on a positive ecological impact (Eco) and explanations provide the reason for recommending an energy saving action. Based on a study conducted using a Telegram bot, different scenarios have been validated with actual data and human feedback. Current results show a total increase of 19\% on the recommendation acceptance ratio when both economical and ecological persuasive facts are employed. This revolutionary approach on recommendation systems, demonstrates how intelligent recommendations can effectively encourage energy saving behavior.

* International Journal of Intelligent Systems, 2020 
* 19 pages, 8 figures, 1 table 

  Access Paper or Ask Questions

Balancing Consumer and Business Value of Recommender Systems: A Simulation-based Analysis

Mar 10, 2022
Nada Ghanem, Stephan Leitner, Dietmar Jannach

Automated recommendations can nowadays be found on many online platforms, and such recommendations can create substantial value for consumers and providers. Often, however, not all recommendable items have the same profit margin, and providers might thus be tempted to promote items that maximize their profit. In the short run, consumers might accept non-optimal recommendations, but they may lose their trust in the long run. Ultimately, this leads to the problem of designing balanced recommendation strategies, which consider both consumer and provider value and lead to sustained business success. This work proposes a simulation framework based on Agent-based Modeling designed to help providers explore longitudinal dynamics of different recommendation strategies. In our model, consumer agents receive recommendations from providers, and the perceived quality of the recommendations influences the consumers' trust over time. In addition, we consider network effects where positive and negative experiences are shared with others on social media. Simulations with our framework show that balanced strategies that consider both stakeholders indeed lead to stable consumer trust and sustained profitability. We also find that social media can reinforce phenomena like the loss of trust in the case of negative experiences. To ensure reproducibility and foster future research, we publicly share our flexible simulation framework.

* 32 pages, 9 figures 

  Access Paper or Ask Questions

Improving Outfit Recommendation with Co-supervision of Fashion Generation

Aug 24, 2019
Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke

The task of fashion recommendation includes two main challenges: visual understanding and visual matching. Visual understanding aims to extract effective visual features. Visual matching aims to model a human notion of compatibility to compute a match between fashion items. Most previous studies rely on recommendation loss alone to guide visual understanding and matching. Although the features captured by these methods describe basic characteristics (e.g., color, texture, shape) of the input items, they are not directly related to the visual signals of the output items (to be recommended). This is problematic because the aesthetic characteristics (e.g., style, design), based on which we can directly infer the output items, are lacking. Features are learned under the recommendation loss alone, where the supervision signal is simply whether the given two items are matched or not. To address this problem, we propose a neural co-supervision learning framework, called the FAshion Recommendation Machine (FARM). FARM improves visual understanding by incorporating the supervision of generation loss, which we hypothesize to be able to better encode aesthetic information. FARM enhances visual matching by introducing a novel layer-to-layer matching mechanism to fuse aesthetic information more effectively, and meanwhile avoiding paying too much attention to the generation quality and ignoring the recommendation performance. Extensive experiments on two publicly available datasets show that FARM outperforms state-of-the-art models on outfit recommendation, in terms of AUC and MRR. Detailed analyses of generated and recommended items demonstrate that FARM can encode better features and generate high quality images as references to improve recommendation performance.

  Access Paper or Ask Questions