Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Superhighway: Bypass Data Sparsity in Cross-Domain CF

Aug 28, 2018
Kwei-Herng Lai, Ting-Hsiang Wang, Heng-Yu Chi, Yian Chen, Ming-Feng Tsai, Chuan-Ju Wang

Cross-domain collaborative filtering (CF) aims to alleviate data sparsity in single-domain CF by leveraging knowledge transferred from related domains. Many traditional methods focus on enriching compared neighborhood relations in CF directly to address the sparsity problem. In this paper, we propose superhighway construction, an alternative explicit relation-enrichment procedure, to improve recommendations by enhancing cross-domain connectivity. Specifically, assuming partially overlapped items (users), superhighway bypasses multi-hop inter-domain paths between cross-domain users (items, respectively) with direct paths to enrich the cross-domain connectivity. The experiments conducted on a real-world cross-region music dataset and a cross-platform movie dataset show that the proposed superhighway construction significantly improves recommendation performance in both target and source domains.


  Access Paper or Ask Questions

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Mar 13, 2017
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He

Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide \& Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data.


  Access Paper or Ask Questions

On the Adversarial Robustness of Causal Algorithmic Recourse

Dec 21, 2021
Ricardo Dominguez-Olmedo, Amir-Hossein Karimi, Bernhard Schölkopf

Algorithmic recourse seeks to provide actionable recommendations for individuals to overcome unfavorable outcomes made by automated decision-making systems. Recourse recommendations should ideally be robust to reasonably small uncertainty in the features of the individual seeking recourse. In this work, we formulate the adversarially robust recourse problem and show that recourse methods offering minimally costly recourse fail to be robust. We then present methods for generating adversarially robust recourse in the linear and in the differentiable case. To ensure that recourse is robust, individuals are asked to make more effort than they would have otherwise had to. In order to shift part of the burden of robustness from the decision-subject to the decision-maker, we propose a model regularizer that encourages the additional cost of seeking robust recourse to be low. We show that classifiers trained with our proposed model regularizer, which penalizes relying on unactionable features for prediction, offer potentially less effortful recourse.

* NeurIPS 2021 WHY-21 Workshop (Oral) 

  Access Paper or Ask Questions

Federated Neural Collaborative Filtering

Jun 02, 2021
Vasileios Perifanis, Pavlos S. Efraimidis

In this work, we present a federated version of the state-of-the-art Neural Collaborative Filtering (NCF) approach for item recommendations. The system, named FedNCF, allows learning without requiring users to expose or transmit their raw data. Experimental validation shows that FedNCF achieves comparable recommendation quality to the original NCF system. Although federated learning (FL) enables learning without raw data transmission, recent attacks showed that FL alone does not eliminate privacy concerns. To overcome this challenge, we integrate a privacy-preserving enhancement with a secure aggregation scheme that satisfies the security requirements against an honest-but-curious (HBC) entity, without affecting the quality of the original model. Finally, we discuss the peculiarities observed in the application of FL in a collaborative filtering (CF) task as well as we evaluate the privacy-preserving mechanism in terms of computational cost.


  Access Paper or Ask Questions

Local Clustering in Contextual Multi-Armed Bandits

Feb 26, 2021
Yikun Ban, Jingrui He

We study identifying user clusters in contextual multi-armed bandits (MAB). Contextual MAB is an effective tool for many real applications, such as content recommendation and online advertisement. In practice, user dependency plays an essential role in the user's actions, and thus the rewards. Clustering similar users can improve the quality of reward estimation, which in turn leads to more effective content recommendation and targeted advertising. Different from traditional clustering settings, we cluster users based on the unknown bandit parameters, which will be estimated incrementally. In particular, we define the problem of cluster detection in contextual MAB, and propose a bandit algorithm, LOCB, embedded with local clustering procedure. And, we provide theoretical analysis about LOCB in terms of the correctness and efficiency of clustering and its regret bound. Finally, we evaluate the proposed algorithm from various aspects, which outperforms state-of-the-art baselines.

* 12 pages 

  Access Paper or Ask Questions

Intelligence Graph

Jan 05, 2018
Han Xiao

In fact, there exist three genres of intelligence architectures: logics (e.g. \textit{Random Forest, A$^*$ Searching}), neurons (e.g. \textit{CNN, LSTM}) and probabilities (e.g. \textit{Naive Bayes, HMM}), all of which are incompatible to each other. However, to construct powerful intelligence systems with various methods, we propose the intelligence graph (short as \textbf{\textit{iGraph}}), which is composed by both of neural and probabilistic graph, under the framework of forward-backward propagation. By the paradigm of iGraph, we design a recommendation model with semantic principle. First, the probabilistic distributions of categories are generated from the embedding representations of users/items, in the manner of neurons. Second, the probabilistic graph infers the distributions of features, in the manner of probabilities. Last, for the recommendation diversity, we perform an expectation computation then conduct a logic judgment, in the manner of logics. Experimentally, we beat the state-of-the-art baselines and verify our conclusions.

* arXiv admin note: substantial text overlap with arXiv:1702.06247 

  Access Paper or Ask Questions

Iterative Multi-document Neural Attention for Multiple Answer Prediction

Feb 08, 2017
Claudio Greco, Alessandro Suglia, Pierpaolo Basile, Gaetano Rossiello, Giovanni Semeraro

People have information needs of varying complexity, which can be solved by an intelligent agent able to answer questions formulated in a proper way, eventually considering user context and preferences. In a scenario in which the user profile can be considered as a question, intelligent agents able to answer questions can be used to find the most relevant answers for a given user. In this work we propose a novel model based on Artificial Neural Networks to answer questions with multiple answers by exploiting multiple facts retrieved from a knowledge base. The model is evaluated on the factoid Question Answering and top-n recommendation tasks of the bAbI Movie Dialog dataset. After assessing the performance of the model on both tasks, we try to define the long-term goal of a conversational recommender system able to interact using natural language and to support users in their information seeking processes in a personalized way.

* Paper accepted and presented at the Deep Understanding and Reasoning: A challenge for Next-generation Intelligent Agents (URANIA) workshop, held in the context of the AI*IA 2016 conference 

  Access Paper or Ask Questions

Coupled Item-based Matrix Factorization

Apr 08, 2014
Fangfang Li, Guandong Xu, Longbing Cao

The essence of the challenges cold start and sparsity in Recommender Systems (RS) is that the extant techniques, such as Collaborative Filtering (CF) and Matrix Factorization (MF), mainly rely on the user-item rating matrix, which sometimes is not informative enough for predicting recommendations. To solve these challenges, the objective item attributes are incorporated as complementary information. However, most of the existing methods for inferring the relationships between items assume that the attributes are "independently and identically distributed (iid)", which does not always hold in reality. In fact, the attributes are more or less coupled with each other by some implicit relationships. Therefore, in this pa-per we propose an attribute-based coupled similarity measure to capture the implicit relationships between items. We then integrate the implicit item coupling into MF to form the Coupled Item-based Matrix Factorization (CIMF) model. Experimental results on two open data sets demonstrate that CIMF outperforms the benchmark methods.

* 7 pages submitted to AAAI2014. arXiv admin note: substantial text overlap with arXiv:1404.7467 

  Access Paper or Ask Questions

One-Bit Matrix Completion with Differential Privacy

Oct 11, 2021
Zhengpin Li, Zheng Wei, Xiaojun Mao, Jian Wang

Matrix completion is a prevailing collaborative filtering method for recommendation systems that requires the data offered by users to provide personalized service. However, due to insidious attacks and unexpected inference, the release of user data often raises serious privacy concerns. Most of the existing solutions focus on improving the privacy guarantee for general matrix completion. As a special case, in recommendation systems where the observations are binary, one-bit matrix completion covers a broad range of real-life situations. In this paper, we propose a novel framework for one-bit matrix completion under the differential privacy constraint. In this framework, we develop several perturbation mechanisms and analyze the privacy-accuracy trade-off offered by each mechanism. The experiments conducted on both synthetic and real-world datasets demonstrate that our proposed approaches can maintain high-level privacy with little loss of completion accuracy.

* We find some errors in the article 

  Access Paper or Ask Questions

Language (Technology) is Power: A Critical Survey of "Bias" in NLP

May 29, 2020
Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach

We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities.


  Access Paper or Ask Questions

<<
213
214
215
216
217
218
219
220
221
222
223
224
225
>>