Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Controllable and Diverse Text Generation in E-commerce

Feb 23, 2021
Huajie Shao, Jun Wang, Haohong Lin, Xuezhou Zhang, Aston Zhang, Heng Ji, Tarek Abdelzaher

In E-commerce, a key challenge in text generation is to find a good trade-off between word diversity and accuracy (relevance) in order to make generated text appear more natural and human-like. In order to improve the relevance of generated results, conditional text generators were developed that use input keywords or attributes to produce the corresponding text. Prior work, however, do not finely control the diversity of automatically generated sentences. For example, it does not control the order of keywords to put more relevant ones first. Moreover, it does not explicitly control the balance between diversity and accuracy. To remedy these problems, we propose a fine-grained controllable generative model, called~\textit{Apex}, that uses an algorithm borrowed from automatic control (namely, a variant of the \textit{proportional, integral, and derivative (PID) controller}) to precisely manipulate the diversity/accuracy trade-off of generated text. The algorithm is injected into a Conditional Variational Autoencoder (CVAE), allowing \textit{Apex} to control both (i) the order of keywords in the generated sentences (conditioned on the input keywords and their order), and (ii) the trade-off between diversity and accuracy. Evaluation results on real-world datasets show that the proposed method outperforms existing generative models in terms of diversity and relevance. Apex is currently deployed to generate production descriptions and item recommendation reasons in Taobao owned by Alibaba, the largest E-commerce platform in China. The A/B production test results show that our method improves click-through rate (CTR) by 13.17\% compared to the existing method for production descriptions. For item recommendation reason, it is able to increase CTR by 6.89\% and 1.42\% compared to user reviews and top-K item recommendation without reviews, respectively.

* The Web Conference (WWW)2021 

  Access Paper or Ask Questions

EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning

Sep 20, 2017
Chao Zhao, Jingchi Jiang, Yi Guan

Objective: Electronic medical records (EMRs) contain an amount of medical knowledge which can be used for clinical decision support (CDS). Our objective is a general system that can extract and represent these knowledge contained in EMRs to support three CDS tasks: test recommendation, initial diagnosis, and treatment plan recommendation, with the given condition of one patient. Methods: We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a single record. Three bipartite subgraphs (bi-graphs) were extracted from the EMKN to support each task. One part of the bi-graph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bi-graph was regarded as a Markov random field to support the inference. Three lazy energy functions and one parameter-based energy function were proposed, as well as two knowledge representation learning-based energy functions, which can provide a distributed representation of medical entities. Three measures were utilized for performance evaluation. Results: On the initial diagnosis task, 80.11% of the test records identified at least one correct disease from top 10 candidates. Test and treatment recommendation results were 87.88% and 92.55%, respectively. These results altogether indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships in regards to knowledge level. Conclusion: Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require designing their energy functions individually.

  Access Paper or Ask Questions

Learning Compressed Embeddings for On-Device Inference

Mar 18, 2022
Niketan Pansare, Jay Katukuri, Aditya Arora, Frank Cipollone, Riyaaz Shaik, Noyan Tokgozoglu, Chandru Venkataraman

In deep learning, embeddings are widely used to represent categorical entities such as words, apps, and movies. An embedding layer maps each entity to a unique vector, causing the layer's memory requirement to be proportional to the number of entities. In the recommendation domain, a given category can have hundreds of thousands of entities, and its embedding layer can take gigabytes of memory. The scale of these networks makes them difficult to deploy in resource constrained environments. In this paper, we propose a novel approach for reducing the size of an embedding table while still mapping each entity to its own unique embedding. Rather than maintaining the full embedding table, we construct each entity's embedding "on the fly" using two separate embedding tables. The first table employs hashing to force multiple entities to share an embedding. The second table contains one trainable weight per entity, allowing the model to distinguish between entities sharing the same embedding. Since these two tables are trained jointly, the network is able to learn a unique embedding per entity, helping it maintain a discriminative capability similar to a model with an uncompressed embedding table. We call this approach MEmCom (Multi-Embedding Compression). We compare with state-of-the-art model compression techniques for multiple problem classes including classification and ranking. On four popular recommender system datasets, MEmCom had a 4% relative loss in nDCG while compressing the input embedding sizes of our recommendation models by 16x, 4x, 12x, and 40x. MEmCom outperforms the state-of-the-art techniques, which achieved 16%, 6%, 10%, and 8% relative loss in nDCG at the respective compression ratios. Additionally, MEmCom is able to compress the RankNet ranking model by 32x on a dataset with millions of users' interactions with games while incurring only a 1% relative loss in nDCG.

  Access Paper or Ask Questions

JIZHI: A Fast and Cost-Effective Model-As-A-Service System for Web-Scale Online Inference at Baidu

Jun 03, 2021
Hao Liu, Qian Gao, Jiang Li, Xiaochao Liao, Hao Xiong, Guangxing Chen, Wenlin Wang, Guobao Yang, Zhiwei Zha, Daxiang Dong, Dejing Dou, Haoyi Xiong

In modern internet industries, deep learning based recommender systems have became an indispensable building block for a wide spectrum of applications, such as search engine, news feed, and short video clips. However, it remains challenging to carry the well-trained deep models for online real-time inference serving, with respect to the time-varying web-scale traffics from billions of users, in a cost-effective manner. In this work, we present JIZHI - a Model-as-a-Service system - that per second handles hundreds of millions of online inference requests to huge deep models with more than trillions of sparse parameters, for over twenty real-time recommendation services at Baidu, Inc. In JIZHI, the inference workflow of every recommendation request is transformed to a Staged Event-Driven Pipeline (SEDP), where each node in the pipeline refers to a staged computation or I/O intensive task processor. With traffics of real-time inference requests arrived, each modularized processor can be run in a fully asynchronized way and managed separately. Besides, JIZHI introduces heterogeneous and hierarchical storage to further accelerate the online inference process by reducing unnecessary computations and potential data access latency induced by ultra-sparse model parameters. Moreover, an intelligent resource manager has been deployed to maximize the throughput of JIZHI over the shared infrastructure by searching the optimal resource allocation plan from historical logs and fine-tuning the load shedding policies over intermediate system feedback. Extensive experiments have been done to demonstrate the advantages of JIZHI from the perspectives of end-to-end service latency, system-wide throughput, and resource consumption. JIZHI has helped Baidu saved more than ten million US dollars in hardware and utility costs while handling 200% more traffics without sacrificing inference efficiency.

* Accepted to SIGKDD 2021 applied data science track 

  Access Paper or Ask Questions

Grapevine: A Wine Prediction Algorithm Using Multi-dimensional Clustering Methods

Jun 29, 2018
Richard Diehl Martinez, Geoffrey Angus, Rooz Mahdavian

We present a method for a wine recommendation system that employs multidimensional clustering and unsupervised learning methods. Our algorithm first performs clustering on a large corpus of wine reviews. It then uses the resulting wine clusters as an approximation of the most common flavor palates, recommending a user a wine by optimizing over a price-quality ratio within clusters that they demonstrated a preference for.

  Access Paper or Ask Questions

Towards Music Captioning: Generating Music Playlist Descriptions

Jan 15, 2017
Keunwoo Choi, George Fazekas, Brian McFee, Kyunghyun Cho, Mark Sandler

Descriptions are often provided along with recommendations to help users' discovery. Recommending automatically generated music playlists (e.g. personalised playlists) introduces the problem of generating descriptions. In this paper, we propose a method for generating music playlist descriptions, which is called as music captioning. In the proposed method, audio content analysis and natural language processing are adopted to utilise the information of each track.

* 2 pages, ISMIR 2016 Late-breaking/session extended abstract 

  Access Paper or Ask Questions

Reducing offline evaluation bias of collaborative filtering algorithms

Jun 12, 2015
Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, Fabrice Rossi

Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper presents a new application of a weighted offline evaluation to reduce this bias for collaborative filtering algorithms.

* European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.137-142, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015) 

  Access Paper or Ask Questions

Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung

Jun 26, 2020
Alexandr G. Rassadin

In this work we present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung. Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation. This solution was evaluated within the LNDb medical imaging challenge and produced the best nodule segmentation result on the final leaderboard.

* ICIAR 2020: Image Analysis and Recognition pp 419-427 
* 10 pages, 5 figures, 2 tables, accepted for publication at ICIAR 2020 (LNDb Grand Challenge) 

  Access Paper or Ask Questions

Visual Discovery at Pinterest

Mar 25, 2017
Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng, Jeff Donahue, Yue Li Du, Trevor Darrell

Over the past three years Pinterest has experimented with several visual search and recommendation services, including Related Pins (2014), Similar Looks (2015), Flashlight (2016) and Lens (2017). This paper presents an overview of our visual discovery engine powering these services, and shares the rationales behind our technical and product decisions such as the use of object detection and interactive user interfaces. We conclude that this visual discovery engine significantly improves engagement in both search and recommendation tasks.

  Access Paper or Ask Questions

Current Challenges and Future Directions in Podcast Information Access

Jun 17, 2021
Rosie Jones, Hamed Zamani, Markus Schedl, Ching-Wei Chen, Sravana Reddy, Ann Clifton, Jussi Karlgren, Helia Hashemi, Aasish Pappu, Zahra Nazari, Longqi Yang, Oguz Semerci, Hugues Bouchard, Ben Carterette

Podcasts are spoken documents across a wide-range of genres and styles, with growing listenership across the world, and a rapidly lowering barrier to entry for both listeners and creators. The great strides in search and recommendation in research and industry have yet to see impact in the podcast space, where recommendations are still largely driven by word of mouth. In this perspective paper, we highlight the many differences between podcasts and other media, and discuss our perspective on challenges and future research directions in the domain of podcast information access.

* SIGIR 2021 

  Access Paper or Ask Questions