Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Thematic recommendations on knowledge graphs using multilayer networks

May 12, 2021
Mariano Beguerisse-Díaz, Dimitrios Korkinof, Till Hoffmann

We present a framework to generate and evaluate thematic recommendations based on multilayer network representations of knowledge graphs (KGs). In this representation, each layer encodes a different type of relationship in the KG, and directed interlayer couplings connect the same entity in different roles. The relative importance of different types of connections is captured by an intuitive salience matrix that can be estimated from data, tuned to incorporate domain knowledge, address different use cases, or respect business logic. We apply an adaptation of the personalised PageRank algorithm to multilayer models of KGs to generate item-item recommendations. These recommendations reflect the knowledge we hold about the content and are suitable for thematic and/or cold-start recommendation settings. Evaluating thematic recommendations from user data presents unique challenges that we address by developing a method to evaluate recommendations relying on user-item ratings, yet respecting their thematic nature. We also show that the salience matrix can be estimated from user data. We demonstrate the utility of our methods by significantly improving consumption metrics in an AB test where collaborative filtering delivered subpar performance. We also apply our approach to movie recommendation using publicly-available data to ensure the reproducibility of our results. We demonstrate that our approach outperforms existing thematic recommendation methods and is even competitive with collaborative filtering approaches.

* 20 pages, 5 figures 

  Access Paper or Ask Questions

Choosing the Best of Both Worlds: Diverse and Novel Recommendations through Multi-Objective Reinforcement Learning

Oct 28, 2021
Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, Kleomenis Katevas

Since the inception of Recommender Systems (RS), the accuracy of the recommendations in terms of relevance has been the golden criterion for evaluating the quality of RS algorithms. However, by focusing on item relevance, one pays a significant price in terms of other important metrics: users get stuck in a "filter bubble" and their array of options is significantly reduced, hence degrading the quality of the user experience and leading to churn. Recommendation, and in particular session-based/sequential recommendation, is a complex task with multiple - and often conflicting objectives - that existing state-of-the-art approaches fail to address. In this work, we take on the aforementioned challenge and introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the RS setting, a novel Reinforcement Learning (RL) framework that can effectively address multi-objective recommendation tasks. The proposed SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations. We integrate this framework with four state-of-the-art session-based recommendation models and compare it with a single-objective RL agent that only focuses on accuracy. Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.

* 9 pages, 4 figures, Proc. ACM WSDM, 2022 In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM '22), February 21-25, 2022, Phoenix, Arizona 

  Access Paper or Ask Questions

Generate Natural Language Explanations for Recommendation

Jan 09, 2021
Hanxiong Chen, Xu Chen, Shaoyun Shi, Yongfeng Zhang

Providing personalized explanations for recommendations can help users to understand the underlying insight of the recommendation results, which is helpful to the effectiveness, transparency, persuasiveness and trustworthiness of recommender systems. Current explainable recommendation models mostly generate textual explanations based on pre-defined sentence templates. However, the expressiveness power of template-based explanation sentences are limited to the pre-defined expressions, and manually defining the expressions require significant human efforts. Motivated by this problem, we propose to generate free-text natural language explanations for personalized recommendation. In particular, we propose a hierarchical sequence-to-sequence model (HSS) for personalized explanation generation. Different from conventional sentence generation in NLP research, a great challenge of explanation generation in e-commerce recommendation is that not all sentences in user reviews are of explanation purpose. To solve the problem, we further propose an auto-denoising mechanism based on topical item feature words for sentence generation. Experiments on various e-commerce product domains show that our approach can not only improve the recommendation accuracy, but also the explanation quality in terms of the offline measures and feature words coverage. This research is one of the initial steps to grant intelligent agents with the ability to explain itself based on natural language sentences.

* Accepted to the SIGIR 2019 Workshop on ExplainAble Recommendation and Search, Paris, France, July 2019 

  Access Paper or Ask Questions

The Unfairness of Popularity Bias in Book Recommendation

Feb 27, 2022
Mohammadmehdi Naghiaei, Hossein A. Rahmani, Mahdi Dehghan

Recent studies have shown that recommendation systems commonly suffer from popularity bias. Popularity bias refers to the problem that popular items (i.e., frequently rated items) are recommended frequently while less popular items are recommended rarely or not at all. Researchers adopted two approaches to examining popularity bias: (i) from the users' perspective, by analyzing how far a recommendation system deviates from user's expectations in receiving popular items, and (ii) by analyzing the amount of exposure that long-tail items receive, measured by overall catalog coverage and novelty. In this paper, we examine the first point of view in the book domain, although the findings may be applied to other domains as well. To this end, we analyze the well-known Book-Crossing dataset and define three user groups based on their tendency towards popular items (i.e., Niche, Diverse, Bestseller-focused). Further, we evaluate the performance of nine state-of-the-art recommendation algorithms and two baselines (i.e., Random, MostPop) from both the accuracy (e.g., NDCG, Precision, Recall) and popularity bias perspectives. Our results indicate that most state-of-the-art recommendation algorithms suffer from popularity bias in the book domain, and fail to meet users' expectations with Niche and Diverse tastes despite having a larger profile size. Conversely, Bestseller-focused users are more likely to receive high-quality recommendations, both in terms of fairness and personalization. Furthermore, our study shows a tradeoff between personalization and unfairness of popularity bias in recommendation algorithms for users belonging to the Diverse and Bestseller groups, that is, algorithms with high capability of personalization suffer from the unfairness of popularity bias.

* Accepted at [email protected] 2022 

  Access Paper or Ask Questions

Beyond Optimizing for Clicks: Incorporating Editorial Values in News Recommendation

Apr 21, 2020
Feng Lu, Anca Dumitrache, David Graus

With the uptake of algorithmic personalization in the news domain, news organizations increasingly trust automated systems with previously considered editorial responsibilities, e.g., prioritizing news to readers. In this paper we study an automated news recommender system in the context of a news organization's editorial values. We conduct and present two online studies with a news recommender system, which span one and a half months and involve over 1,200 users. In our first study we explore how our news recommender steers reading behavior in the context of editorial values such as serendipity, dynamism, diversity, and coverage. Next, we present an intervention study where we extend our news recommender to steer our readers to more dynamic reading behavior. We find that (i) our recommender system yields more diverse reading behavior and yields a higher coverage of articles compared to non-personalized editorial rankings, and (ii) we can successfully incorporate dynamism in our recommender system as a re-ranking method, effectively steering our readers to more dynamic articles without hurting our recommender system's accuracy.

* To appear in UMAP 2020 

  Access Paper or Ask Questions

A Survey on Deep Learning Based Point-Of-Interest (POI) Recommendations

Nov 20, 2020
Md. Ashraful Islam, Mir Mahathir Mohammad, Sarkar Snigdha Sarathi Das, Mohammed Eunus Ali

Location-based Social Networks (LBSNs) enable users to socialize with friends and acquaintances by sharing their check-ins, opinions, photos, and reviews. Huge volume of data generated from LBSNs opens up a new avenue of research that gives birth to a new sub-field of recommendation systems, known as Point-of-Interest (POI) recommendation. A POI recommendation technique essentially exploits users' historical check-ins and other multi-modal information such as POI attributes and friendship network, to recommend the next set of POIs suitable for a user. A plethora of earlier works focused on traditional machine learning techniques by using hand-crafted features from the dataset. With the recent surge of deep learning research, we have witnessed a large variety of POI recommendation works utilizing different deep learning paradigms. These techniques largely vary in problem formulations, proposed techniques, used datasets, and features, etc. To the best of our knowledge, this work is the first comprehensive survey of all major deep learning-based POI recommendation works. Our work categorizes and critically analyzes the recent POI recommendation works based on different deep learning paradigms and other relevant features. This review can be considered a cookbook for researchers or practitioners working in the area of POI recommendation.

* 21 pages, 5 figures 

  Access Paper or Ask Questions

CITIES: Contextual Inference of Tail-Item Embeddings for Sequential Recommendation

May 23, 2021
Seongwon Jang, Hoyeop Lee, Hyunsouk Cho, Sehee Chung

Sequential recommendation techniques provide users with product recommendations fitting their current preferences by handling dynamic user preferences over time. Previous studies have focused on modeling sequential dynamics without much regard to which of the best-selling products (i.e., head items) or niche products (i.e., tail items) should be recommended. We scrutinize the structural reason for why tail items are barely served in the current sequential recommendation model, which consists of an item-embedding layer, a sequence-modeling layer, and a recommendation layer. Well-designed sequence-modeling and recommendation layers are expected to naturally learn suitable item embeddings. However, tail items are likely to fall short of this expectation because the current model structure is not suitable for learning high-quality embeddings with insufficient data. Thus, tail items are rarely recommended. To eliminate this issue, we propose a framework called CITIES, which aims to enhance the quality of the tail-item embeddings by training an embedding-inference function using multiple contextual head items so that the recommendation performance improves for not only the tail items but also for the head items. Moreover, our framework can infer new-item embeddings without an additional learning process. Extensive experiments on two real-world datasets show that applying CITIES to the state-of-the-art methods improves recommendation performance for both tail and head items. We conduct an additional experiment to verify that CITIES can infer suitable new-item embeddings as well.

* Accepted as a full paper at IEEE ICDM 2020 

  Access Paper or Ask Questions

A Large-Scale Rich Context Query and Recommendation Dataset in Online Knowledge-Sharing

Jun 11, 2021
Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun Liu, Shaoping Ma

Data plays a vital role in machine learning studies. In the research of recommendation, both user behaviors and side information are helpful to model users. So, large-scale real scenario datasets with abundant user behaviors will contribute a lot. However, it is not easy to get such datasets as most of them are only hold and protected by companies. In this paper, a new large-scale dataset collected from a knowledge-sharing platform is presented, which is composed of around 100M interactions collected within 10 days, 798K users, 165K questions, 554K answers, 240K authors, 70K topics, and more than 501K user query keywords. There are also descriptions of users, answers, questions, authors, and topics, which are anonymous. Note that each user's latest query keywords have not been included in previous open datasets, which reveal users' explicit information needs. We characterize the dataset and demonstrate its potential applications for recommendation study. Multiple experiments show the dataset can be used to evaluate algorithms in general top-N recommendation, sequential recommendation, and context-aware recommendation. This dataset can also be used to integrate search and recommendation and recommendation with negative feedback. Besides, tasks beyond recommendation, such as user gender prediction, most valuable answerer identification, and high-quality answer recognition, can also use this dataset. To the best of our knowledge, this is the largest real-world interaction dataset for personalized recommendation.

* 7 pages 

  Access Paper or Ask Questions

Deep Learning to Address Candidate Generation and Cold Start Challenges in Recommender Systems: A Research Survey

Jul 17, 2019
Kiran Rama, Pradeep Kumar, Bharat Bhasker

Among the machine learning applications to business, recommender systems would take one of the top places when it comes to success and adoption. They help the user in accelerating the process of search while helping businesses maximize sales. Post phenomenal success in computer vision and speech recognition, deep learning methods are beginning to get applied to recommender systems. Current survey papers on deep learning in recommender systems provide a historical overview and taxonomy of recommender systems based on type. Our paper addresses the gaps of providing a taxonomy of deep learning approaches to address recommender systems problems in the areas of cold start and candidate generation in recommender systems. We outline different challenges in recommender systems into those related to the recommendations themselves (include relevance, speed, accuracy and scalability), those related to the nature of the data (cold start problem, imbalance and sparsity) and candidate generation. We then provide a taxonomy of deep learning techniques to address these challenges. Deep learning techniques are mapped to the different challenges in recommender systems providing an overview of how deep learning techniques can be used to address them. We contribute a taxonomy of deep learning techniques to address the cold start and candidate generation problems in recommender systems. Cold Start is addressed through additional features (for audio, images, text) and by learning hidden user and item representations. Candidate generation has been addressed by separate networks, RNNs, autoencoders and hybrid methods. We also summarize the advantages and limitations of these techniques while outlining areas for future research.

* 22 pages, Submitted and Presented at PAN IIM Conference in IIM Bangalore 

  Access Paper or Ask Questions

Dynamic-K Recommendation with Personalized Decision Boundary

Dec 25, 2020
Yan Gao, Jiafeng Guo, Yanyan Lan, Huaming Liao

In this paper, we investigate the recommendation task in the most common scenario with implicit feedback (e.g., clicks, purchases). State-of-the-art methods in this direction usually cast the problem as to learn a personalized ranking on a set of items (e.g., webpages, products). The top-N results are then provided to users as recommendations, where the N is usually a fixed number pre-defined by the system according to some heuristic criteria (e.g., page size, screen size). There is one major assumption underlying this fixed-number recommendation scheme, i.e., there are always sufficient relevant items to users' preferences. Unfortunately, this assumption may not always hold in real-world scenarios. In some applications, there might be very limited candidate items to recommend, and some users may have very high relevance requirement in recommendation. In this way, even the top-1 ranked item may not be relevant to a user's preference. Therefore, we argue that it is critical to provide a dynamic-K recommendation, where the K should be different with respect to the candidate item set and the target user. We formulate this dynamic-K recommendation task as a joint learning problem with both ranking and classification objectives. The ranking objective is the same as existing methods, i.e., to create a ranking list of items according to users' interests. The classification objective is unique in this work, which aims to learn a personalized decision boundary to differentiate the relevant items from irrelevant items. Based on these ideas, we extend two state-of-the-art ranking-based recommendation methods, i.e., BPRMF and HRM, to the corresponding dynamic-K versions, namely DK-BPRMF and DK-HRM. Our experimental results on two datasets show that the dynamic-K models are more effective than the original fixed-N recommendation methods.

* CCIR 2017 
* 12 pages 

  Access Paper or Ask Questions