Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

Jan 28, 2020
Lei Chen, Le Wu, Richang Hong, Kun Zhang, Meng Wang

Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. Recently, in Collaborative Filtering (CF) based Recommender Systems (RS), by treating the user-item interaction behavior as a bipartite graph, some researchers model higher-layer collaborative signals with GCNs. These GCN based recommender models show superior performance compared to traditional works. However, these models suffer from training difficulty with non-linear activations for large user-item graphs. Besides, most GCN based models could not model deeper layers due to the over smoothing effect with the graph convolution operation. In this paper, we revisit GCN based CF models from two aspects. First, we empirically show that removing non-linearities would enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data. The proposed model is a linear model and it is easy to train, scale to large datasets, and yield better efficiency and effectiveness on two real datasets. We publish the source code at

* The updated version is publised in AAAI 2020 

  Access Paper or Ask Questions

Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques

May 14, 2014
Olivier Nicol, Jérémie Mary, Philippe Preux

In many recommendation applications such as news recommendation, the items that can be rec- ommended come and go at a very fast pace. This is a challenge for recommender systems (RS) to face this setting. Online learning algorithms seem to be the most straight forward solution. The contextual bandit framework was introduced for that very purpose. In general the evaluation of a RS is a critical issue. Live evaluation is of- ten avoided due to the potential loss of revenue, hence the need for offline evaluation methods. Two options are available. Model based meth- ods are biased by nature and are thus difficult to trust when used alone. Data driven methods are therefore what we consider here. Evaluat- ing online learning algorithms with past data is not simple but some methods exist in the litera- ture. Nonetheless their accuracy is not satisfac- tory mainly due to their mechanism of data re- jection that only allow the exploitation of a small fraction of the data. We precisely address this issue in this paper. After highlighting the limita- tions of the previous methods, we present a new method, based on bootstrapping techniques. This new method comes with two important improve- ments: it is much more accurate and it provides a measure of quality of its estimation. The latter is a highly desirable property in order to minimize the risks entailed by putting online a RS for the first time. We provide both theoretical and ex- perimental proofs of its superiority compared to state-of-the-art methods, as well as an analysis of the convergence of the measure of quality.

* International Conference on Machine Learning 32 (2014) 

  Access Paper or Ask Questions

When and Whom to Collaborate with in a Changing Environment: A Collaborative Dynamic Bandit Solution

Apr 14, 2021
Chuanhao Li, Qingyun Wu, Hongning Wang

Collaborative bandit learning, i.e., bandit algorithms that utilize collaborative filtering techniques to improve sample efficiency in online interactive recommendation, has attracted much research attention as it enjoys the best of both worlds. However, all existing collaborative bandit learning solutions impose a stationary assumption about the environment, i.e., both user preferences and the dependency among users are assumed static over time. Unfortunately, this assumption hardly holds in practice due to users' ever-changing interests and dependence relations, which inevitably costs a recommender system sub-optimal performance in practice. In this work, we develop a collaborative dynamic bandit solution to handle a changing environment for recommendation. We explicitly model the underlying changes in both user preferences and their dependency relation as a stochastic process. Individual user's preference is modeled by a mixture of globally shared contextual bandit models with a Dirichlet Process prior. Collaboration among users is thus achieved via Bayesian inference over the global bandit models. Model selection and arm selection for each user are done via Thompson sampling to balance exploitation and exploration. Our solution is proved to maintain a standard $\tilde O(\sqrt{T})$ sublinear regret even in such a challenging environment. And extensive empirical evaluations on both synthetic and real-world datasets further confirmed the necessity of modeling a changing environment and our algorithm's practical advantages against several state-of-the-art online learning solutions.

  Access Paper or Ask Questions

Learning Diverse Fashion Collocation by Neural Graph Filtering

Mar 11, 2020
Xin Liu, Yongbin Sun, Ziwei Liu, Dahua Lin

Fashion recommendation systems are highly desired by customers to find visually-collocated fashion items, such as clothes, shoes, bags, etc. While existing methods demonstrate promising results, they remain lacking in flexibility and diversity, e.g. assuming a fixed number of items or favoring safe but boring recommendations. In this paper, we propose a novel fashion collocation framework, Neural Graph Filtering, that models a flexible set of fashion items via a graph neural network. Specifically, we consider the visual embeddings of each garment as a node in the graph, and describe the inter-garment relationship as the edge between nodes. By applying symmetric operations on the edge vectors, this framework allows varying numbers of inputs/outputs and is invariant to their ordering. We further include a style classifier augmented with focal loss to enable the collocation of significantly diverse styles, which are inherently imbalanced in the training set. To facilitate a comprehensive study on diverse fashion collocation, we reorganize Amazon Fashion dataset with carefully designed evaluation protocols. We evaluate the proposed approach on three popular benchmarks, the Polyvore dataset, the Polyvore-D dataset, and our reorganized Amazon Fashion dataset. Extensive experimental results show that our approach significantly outperforms the state-of-the-art methods with over 10% improvements on the standard AUC metric on the established tasks. More importantly, 82.5% of the users prefer our diverse-style recommendations over other alternatives in a real-world perception study.

  Access Paper or Ask Questions

Modeling of the Latent Embedding of Music using Deep Neural Network

May 12, 2017
Zhou Xing, Eddy Baik, Yan Jiao, Nilesh Kulkarni, Chris Li, Gautam Muralidhar, Marzieh Parandehgheibi, Erik Reed, Abhishek Singhal, Fei Xiao, Chris Pouliot

While both the data volume and heterogeneity of the digital music content is huge, it has become increasingly important and convenient to build a recommendation or search system to facilitate surfacing these content to the user or consumer community. Most of the recommendation models fall into two primary species, collaborative filtering based and content based approaches. Variants of instantiations of collaborative filtering approach suffer from the common issues of so called "cold start" and "long tail" problems where there is not much user interaction data to reveal user opinions or affinities on the content and also the distortion towards the popular content. Content-based approaches are sometimes limited by the richness of the available content data resulting in a heavily biased and coarse recommendation result. In recent years, the deep neural network has enjoyed a great success in large-scale image and video recognitions. In this paper, we propose and experiment using deep convolutional neural network to imitate how human brain processes hierarchical structures in the auditory signals, such as music, speech, etc., at various timescales. This approach can be used to discover the latent factor models of the music based upon acoustic hyper-images that are extracted from the raw audio waves of music. These latent embeddings can be used either as features to feed to subsequent models, such as collaborative filtering, or to build similarity metrics between songs, or to classify music based on the labels for training such as genre, mood, sentiment, etc.

  Access Paper or Ask Questions

Jaccard Filtration and Stable Paths in the Mapper

Jun 19, 2019
Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel Saul

The contributions of this paper are two-fold. We define a new filtration called the cover filtration built from a single cover based on a generalized Jaccard distance. We provide stability results for the cover filtration and show how the construction is equivalent to the Cech filtration under certain settings. We then develop a language and theory for stable paths within this filtration, inspired by ideas of persistent homology. We demonstrate how the filtration and paths can be applied to a variety of applications in which defining a metric is not obvious but a cover is readily available. We demonstrate the usefulness of this construction by employing it in the context of recommendation systems and explainable machine learning. We demonstrate a new perspective for modeling recommendation system data sets that does not require manufacturing a bespoke metric. This extends work on graph-based recommendation systems, allowing a topological perspective. For an explicit example, we look at a movies data set and we find the stable paths identified in our framework represent a sequence of movies constituting a gentle transition and ordering from one genre to another. For explainable machine learning, we apply the Mapper for model induction, providing explanations in the form of paths between subpopulations or observations. Our framework provides an alternative way of building a filtration from a single mapper that is then used to explore stable paths. As a direct illustration, we build a mapper from a supervised machine learning model trained on the FashionMNIST data set. We show that the stable paths in the cover filtration provide improved explanations of relationships between subpopulations of images.

  Access Paper or Ask Questions

Sequential Matrix Completion

Oct 23, 2017
Annie Marsden, Sergio Bacallado

We propose a novel algorithm for sequential matrix completion in a recommender system setting, where the $(i,j)$th entry of the matrix corresponds to a user $i$'s rating of product $j$. The objective of the algorithm is to provide a sequential policy for user-product pair recommendation which will yield the highest possible ratings after a finite time horizon. The algorithm uses a Gamma process factor model with two posterior-focused bandit policies, Thompson Sampling and Information-Directed Sampling. While Thompson Sampling shows competitive performance in simulations, state-of-the-art performance is obtained from Information-Directed Sampling, which makes its recommendations based off a ratio between the expected reward and a measure of information gain. To our knowledge, this is the first implementation of Information Directed Sampling on large real datasets. This approach contributes to a recent line of research on bandit approaches to collaborative filtering including Kawale et al. (2015), Li et al. (2010), Bresler et al. (2014), Li et al. (2016), Deshpande & Montanari (2012), and Zhao et al. (2013). The setting of this paper, as has been noted in Kawale et al. (2015) and Zhao et al. (2013), presents significant challenges to bounding regret after finite horizons. We discuss these challenges in relation to simpler models for bandits with side information, such as linear or gaussian process bandits, and hope the experiments presented here motivate further research toward theoretical guarantees.

* 10 pages, 6 figures 

  Access Paper or Ask Questions

A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations

Oct 09, 2020
Andrea Ferrario, Michele Loi

Counterfactual explanations are a prominent example of post-hoc interpretability methods in the explainable Artificial Intelligence research domain. They provide individuals with alternative scenarios and a set of recommendations to achieve a sought-after machine learning model outcome. Recently, the literature has identified desiderata of counterfactual explanations, such as feasibility, actionability and sparsity that should support their applicability in real-world contexts. However, we show that the literature has neglected the problem of the time dependency of counterfactual explanations. We argue that, due to their time dependency and because of the provision of recommendations, even feasible, actionable and sparse counterfactual explanations may not be appropriate in real-world applications. This is due to the possible emergence of what we call "unfortunate counterfactual events." These events may occur due to the retraining of machine learning models whose outcomes have to be explained via counterfactual explanation. Series of unfortunate counterfactual events frustrate the efforts of those individuals who successfully implemented the recommendations of counterfactual explanations. This negatively affects people's trust in the ability of institutions to provide machine learning-supported decisions consistently. We introduce an approach to address the problem of the emergence of unfortunate counterfactual events that makes use of histories of counterfactual explanations. In the final part of the paper we propose an ethical analysis of two distinct strategies to cope with the challenge of unfortunate counterfactual events. We show that they respond to an ethically responsible imperative to preserve the trustworthiness of credit lending organizations, the decision models they employ, and the social-economic function of credit lending.

* 9 pages 

  Access Paper or Ask Questions

DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks

Mar 01, 2018
Zi Yin, Keng-hao Chang, Ruofei Zhang

Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes decisions based on a derived uncertainty (entropy) measure conditioned on user inputs, possibly with multiple rounds of interactions. Three applications, namely a rewritter, a relevance scorer and a chatbot for ad recommendation, were built around DeepProbe, with the first two serving as precursory building blocks for the third. We first use the seq2seq model in DeepProbe to rewrite a user query into one of standard query form, which is submitted to an ordinary recommendation system. Secondly, we evaluate DeepProbe's seq2seq model-based relevance scoring. Finally, we build a chatbot prototype capable of making active user interactions, which can ask questions that maximize information gain, allowing for a more efficient user intention idenfication process. We evaluate first two applications by 1) comparing with baselines by BLEU and AUC, and 2) human judge evaluation. Both demonstrate significant improvements compared with current state-of-the-art systems, proving their values as useful tools on their own, and at the same time laying a good foundation for the ongoing chatbot application.

* Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017 

  Access Paper or Ask Questions

(Machine) Learning to Improve the Empirical Performance of Discrete Algorithms

Sep 29, 2021
Imran Adham, Jesus De Loera, Zhenyang Zhang

This paper discusses a data-driven, empirically-based framework to make algorithmic decisions or recommendations without expert knowledge. We improve the performance of two algorithmic case studies: the selection of a pivot rule for the Simplex method and the selection of an all-pair shortest paths algorithm. We train machine learning methods to select the optimal algorithm for given data without human expert opinion. We use two types of techniques, neural networks and boosted decision trees. We concluded, based on our experiments, that: 1) Our selection framework recommends various pivot rules that improve overall total performance over just using a fixed default pivot rule. Over many years experts identified steepest-edge pivot rule as a favorite pivot rule. Our data analysis corroborates that the number of iterations by steepest-edge is no more than 4 percent more than the optimal selection which corroborates human expert knowledge, but this time the knowledge was obtained using machine learning. Here our recommendation system is best when using gradient boosted trees. 2) For the all-pairs shortest path problem, the models trained made a large improvement and our selection is on average .07 percent away from the optimal choice. The conclusions do not seem to be affected by the machine learning method we used. We tried to make a parallel analysis of both algorithmic problems, but it is clear that there are intrinsic differences. For example, in the all-pairs shortest path problem the graph density is a reasonable predictor, but there is no analogous single parameter for decisions in the Simplex method.

  Access Paper or Ask Questions