Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Codebook based Audio Feature Representation for Music Information Retrieval

Dec 19, 2013
Yonatan Vaizman, Brian McFee, Gert Lanckriet

Digital music has become prolific in the web in recent decades. Automated recommendation systems are essential for users to discover music they love and for artists to reach appropriate audience. When manual annotations and user preference data is lacking (e.g. for new artists) these systems must rely on \emph{content based} methods. Besides powerful machine learning tools for classification and retrieval, a key component for successful recommendation is the \emph{audio content representation}. Good representations should capture informative musical patterns in the audio signal of songs. These representations should be concise, to enable efficient (low storage, easy indexing, fast search) management of huge music repositories, and should also be easy and fast to compute, to enable real-time interaction with a user supplying new songs to the system. Before designing new audio features, we explore the usage of traditional local features, while adding a stage of encoding with a pre-computed \emph{codebook} and a stage of pooling to get compact vectorial representations. We experiment with different encoding methods, namely \emph{the LASSO}, \emph{vector quantization (VQ)} and \emph{cosine similarity (CS)}. We evaluate the representations' quality in two music information retrieval applications: query-by-tag and query-by-example. Our results show that concise representations can be used for successful performance in both applications. We recommend using top-$\tau$ VQ encoding, which consistently performs well in both applications, and requires much less computation time than the LASSO.

* Journal paper. Submitted to IEEE transactions on Audio, Speech and Language Processing. Submitted on Dec 18th, 2013 

  Access Paper or Ask Questions

Report prepared by the Montreal AI Ethics Institute (MAIEI) on Publication Norms for Responsible AI

Oct 04, 2020
Abhishek Gupta, Camylle Lanteigne, Victoria Heath

The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and technology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AI's potential threats and use cases. Unfortunately, it's difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) co-hosted two public consultations with the Partnership on AI in May 2020. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a "black market" for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.

* Report submitted to Partnership on AI for inclusion in their work on Publishing Norms for Responsible AI 

  Access Paper or Ask Questions

Report prepared by the Montreal AI Ethics Institute (MAIEI) for Publication Norms for Responsible AI by Partnership on AI

Sep 15, 2020
Abhishek Gupta, Camylle Lanteigne, Victoria Heath

The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and technology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AI's potential threats and use cases. Unfortunately, it's difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) collaborated with the Partnership on AI in May 2020 to host two public consultation meetups. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a "black market" for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.

* Report submitted to Partnership on AI for inclusion in their work on Publishing Norms for Responsible AI 

  Access Paper or Ask Questions

PKGM: A Pre-trained Knowledge Graph Model for E-commerce Application

Mar 02, 2022
Wen Zhang, Chi-Man Wong, Ganqinag Ye, Bo Wen, Hongting Zhou, Wei Zhang, Huajun Chen

In recent years, knowledge graphs have been widely applied as a uniform way to organize data and have enhanced many tasks requiring knowledge. In online shopping platform Taobao, we built a billion-scale e-commerce product knowledge graph. It organizes data uniformly and provides item knowledge services for various tasks such as item recommendation. Usually, such knowledge services are provided through triple data, while this implementation includes (1) tedious data selection works on product knowledge graph and (2) task model designing works to infuse those triples knowledge. More importantly, product knowledge graph is far from complete, resulting error propagation to knowledge enhanced tasks. To avoid these problems, we propose a Pre-trained Knowledge Graph Model (PKGM) for the billion-scale product knowledge graph. On the one hand, it could provide item knowledge services in a uniform way with service vectors for embedding-based and item-knowledge-related task models without accessing triple data. On the other hand, it's service is provided based on implicitly completed product knowledge graph, overcoming the common the incomplete issue. We also propose two general ways to integrate the service vectors from PKGM into downstream task models. We test PKGM in five knowledge-related tasks, item classification, item resolution, item recommendation, scene detection and sequential recommendation. Experimental results show that PKGM introduces significant performance gains on these tasks, illustrating the useful of service vectors from PKGM.

* This is an extension of work "Billion-scale Pre-trained E-commerce Product Knowledge Graph Model" published at ICDE2021. We test PKGM on two additional tasks, scene detection and sequential recommendation, and add serving with item embeddings as one of the baseline. The extensive experiments show the effectiveness of PKGM, pre-trained knowledge graph model. arXiv admin note: text overlap with arXiv:2105.00388 

  Access Paper or Ask Questions

Self-Adaptive Reconfigurable Arrays (SARA): Using ML to Assist Scaling GEMM Acceleration

Jan 12, 2021
Ananda Samajdar, Michael Pellauer, Tushar Krishna

With increasing diversity in Deep Neural Network(DNN) models in terms of layer shapes and sizes, the research community has been investigating flexible/reconfigurable accelerator substrates. This line of research has opened up two challenges. The first is to determine the appropriate amount of flexibility within an accelerator array that that can trade-off the performance benefits versus the area overheads of the reconfigurability. The second is being able to determine the right configuration of the array for the current DNN model and/or layer and reconfigure the accelerator at runtime. This work introduces a new class of accelerators that we call Self Adaptive Reconfigurable Array (SARA). SARA architectures comprise of both a reconfigurable array and a hardware unit capable of determining an optimized configuration for the array at runtime. We demonstrate an instance of SARA with an accelerator we call SAGAR, which introduces a novel reconfigurable systolic array that can be configured to work as a distributed collection of smaller arrays of various sizes or as a single array with flexible aspect ratios. We also develop a novel recommendation neural network called ADAPTNET which recommends an array configuration and dataflow for the current layer parameters. ADAPTNET runs on an integrated custom hardware ADAPTNETX that runs ADAPTNET at runtime and reconfigures the array, making the entire accelerator self-sufficient. SAGAR is capable of providing the same mapping flexibility as a collection of 10244x4 arrays working as a distributed system while achieving 3.5x more power efficiency and 3.2x higher compute density Furthermore, the runtime achieved on the recommended parameters from ADAPTNET is 99.93% of the best achievable runtime.


  Access Paper or Ask Questions

Bayesian Exploration: Incentivizing Exploration in Bayesian Games

Jul 01, 2018
Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu

We consider a ubiquitous scenario in the Internet economy when individual decision-makers (henceforth, agents) both produce and consume information as they make strategic choices in an uncertain environment. This creates a three-way tradeoff between exploration (trying out insufficiently explored alternatives to help others in the future), exploitation (making optimal decisions given the information discovered by other agents), and incentives of the agents (who are myopically interested in exploitation, while preferring the others to explore). We posit a principal who controls the flow of information from agents that came before, and strives to coordinate the agents towards a socially optimal balance between exploration and exploitation, not using any monetary transfers. The goal is to design a recommendation policy for the principal which respects agents' incentives and minimizes a suitable notion of regret. We extend prior work in this direction to allow the agents to interact with one another in a shared environment: at each time step, multiple agents arrive to play a Bayesian game, receive recommendations, choose their actions, receive their payoffs, and then leave the game forever. The agents now face two sources of uncertainty: the actions of the other agents and the parameters of the uncertain game environment. Our main contribution is to show that the principal can achieve constant regret when the utilities are deterministic (where the constant depends on the prior distribution, but not on the time horizon), and logarithmic regret when the utilities are stochastic. As a key technical tool, we introduce the concept of explorable actions, the actions which some incentive-compatible policy can recommend with non-zero probability. We show how the principal can identify (and explore) all explorable actions, and use the revealed information to perform optimally.


  Access Paper or Ask Questions

Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf DLRM Model : 1000$\times$ Compression and 2.7$\times$ Faster Inference

Aug 04, 2021
Aditya Desai, Li Chou, Anshumali Shrivastava

Deep learning for recommendation data is the one of the most pervasive and challenging AI workload in recent times. State-of-the-art recommendation models are one of the largest models rivalling the likes of GPT-3 and Switch Transformer. Challenges in deep learning recommendation models (DLRM) stem from learning dense embeddings for each of the categorical values. These embedding tables in industrial scale models can be as large as hundreds of terabytes. Such large models lead to a plethora of engineering challenges, not to mention prohibitive communication overheads, and slower training and inference times. Of these, slower inference time directly impacts user experience. Model compression for DLRM is gaining traction and the community has recently shown impressive compression results. In this paper, we present Random Offset Block Embedding Array (ROBE) as a low memory alternative to embedding tables which provide orders of magnitude reduction in memory usage while maintaining accuracy and boosting execution speed. ROBE is a simple fundamental approach in improving both cache performance and the variance of randomized hashing, which could be of independent interest in itself. We demonstrate that we can successfully train DLRM models with same accuracy while using $1000 \times$ less memory. A $1000\times$ compressed model directly results in faster inference without any engineering. In particular, we show that we can train DLRM model using ROBE Array of size 100MB on a single GPU to achieve AUC of 0.8025 or higher as required by official MLPerf CriteoTB benchmark DLRM model of 100GB while achieving about $2.7\times$ (170\%) improvement in inference throughput.


  Access Paper or Ask Questions

PreSizE: Predicting Size in E-Commerce using Transformers

May 04, 2021
Yotam Eshel, Or Levi, Haggai Roitman, Alexander Nus

Recent advances in the e-commerce fashion industry have led to an exploration of novel ways to enhance buyer experience via improved personalization. Predicting a proper size for an item to recommend is an important personalization challenge, and is being studied in this work. Earlier works in this field either focused on modeling explicit buyer fitment feedback or modeling of only a single aspect of the problem (e.g., specific category, brand, etc.). More recent works proposed richer models, either content-based or sequence-based, better accounting for content-based aspects of the problem or better modeling the buyer's online journey. However, both these approaches fail in certain scenarios: either when encountering unseen items (sequence-based models) or when encountering new users (content-based models). To address the aforementioned gaps, we propose PreSizE - a novel deep learning framework which utilizes Transformers for accurate size prediction. PreSizE models the effect of both content-based attributes, such as brand and category, and the buyer's purchase history on her size preferences. Using an extensive set of experiments on a large-scale e-commerce dataset, we demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines. By encoding item attributes, PreSizE better handles cold-start cases with unseen items, and cases where buyers have little past purchase data. As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system yielding very effective features and significantly improving recommendations.

* Accepted for publication in SIGIR'2021 

  Access Paper or Ask Questions

Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network

Jan 19, 2021
Jianguo Chen, Kenli Li, Keqin Li, Philip S. Yu, Zeng Zeng

Benefiting from convenient cycling and flexible parking locations, the Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries. However, redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors. In this paper, we propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network. The BSDP system contains four modules: bicycle drop-off location clustering, bicycle-station graph modeling, bicycle-station location prediction, and bicycle-station layout recommendation. In the bicycle drop-off location clustering module, candidate bicycle stations are clustered from each spatio-temporal subset of the large-scale cycling trajectory records. In the bicycle-station graph modeling module, a weighted digraph model is built based on the clustering results and inferior stations with low station revenue and utility are filtered. Then, graph models across time periods are combined to create a graph sequence model. In the bicycle-station location prediction module, the GGNN model is used to train the graph sequence data and dynamically predict bicycle stations in the next period. In the bicycle-station layout recommendation module, the predicted bicycle stations are fine-tuned according to the government urban management plan, which ensures that the recommended station layout is conducive to city management, vendor revenue, and user convenience. Experiments on actual DL-PBS networks verify the effectiveness, accuracy and feasibility of the proposed BSDP system.


  Access Paper or Ask Questions

To what extent should we trust AI models when they extrapolate?

Jan 27, 2022
Roozbeh Yousefzadeh, Xuenan Cao

Many applications affecting human lives rely on models that have come to be known under the umbrella of machine learning and artificial intelligence. These AI models are usually complicated mathematical functions that map from an input space to an output space. Stakeholders are interested to know the rationales behind models' decisions and functional behavior. We study this functional behavior in relation to the data used to create the models. On this topic, scholars have often assumed that models do not extrapolate, i.e., they learn from their training samples and process new input by interpolation. This assumption is questionable: we show that models extrapolate frequently; the extent of extrapolation varies and can be socially consequential. We demonstrate that extrapolation happens for a substantial portion of datasets more than one would consider reasonable. How can we trust models if we do not know whether they are extrapolating? Given a model trained to recommend clinical procedures for patients, can we trust the recommendation when the model considers a patient older or younger than all the samples in the training set? If the training set is mostly Whites, to what extent can we trust its recommendations about Black and Hispanic patients? Which dimension (race, gender, or age) does extrapolation happen? Even if a model is trained on people of all races, it still may extrapolate in significant ways related to race. The leading question is, to what extent can we trust AI models when they process inputs that fall outside their training set? This paper investigates several social applications of AI, showing how models extrapolate without notice. We also look at different sub-spaces of extrapolation for specific individuals subject to AI models and report how these extrapolations can be interpreted, not mathematically, but from a humanistic point of view.


  Access Paper or Ask Questions

<<
200
201
202
203
204
205
206
207
208
209
210
211
212
>>