Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Analyzing Customer Feedback for Product Fit Prediction

Aug 28, 2019
Stephan Baier

One of the biggest hurdles for customers when purchasing fashion online, is the difficulty of finding products with the right fit. In order to provide a better online shopping experience, platforms need to find ways to recommend the right product sizes and the best fitting products to their customers. These recommendation systems, however, require customer feedback in order to estimate the most suitable sizing options. Such feedback is rare and often only available as natural text. In this paper, we examine the extraction of product fit feedback from customer reviews using natural language processing techniques. In particular, we compare traditional methods with more recent transfer learning techniques for text classification, and analyze their results. Our evaluation shows, that the transfer learning approach ULMFit is not only comparatively fast to train, but also achieves highest accuracy on this task. The integration of the extracted information with actual size recommendation systems is left for future work.

  Access Paper or Ask Questions

Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem

Apr 29, 2019
Junyu Cao, Wei Sun

Motivated by the phenomenon that companies introduce new products to keep abreast with customers' rapidly changing tastes, we consider a novel online learning setting where a profit-maximizing seller needs to learn customers' preferences through offering recommendations, which may contain existing products and new products that are launched in the middle of a selling period. We propose a sequential multinomial logit (SMNL) model to characterize customers' behavior when product recommendations are presented in tiers. For the offline version with known customers' preferences, we propose a polynomial-time algorithm and characterize the properties of the optimal tiered product recommendation. For the online problem, we propose a learning algorithm and quantify its regret bound. Moreover, we extend the setting to incorporate a constraint which ensures every new product is learned to a given accuracy. Our results demonstrate the tier structure can be used to mitigate the risks associated with learning new products.

  Access Paper or Ask Questions

TrQuery: An Embedding-based Framework for Recommanding SPARQL Queries

Jun 16, 2018
Lijing Zhang, Xiaowang Zhang, Zhiyong Feng

In this paper, we present an embedding-based framework (TrQuery) for recommending solutions of a SPARQL query, including approximate solutions when exact querying solutions are not available due to incompleteness or inconsistencies of real-world RDF data. Within this framework, embedding is applied to score solutions together with edit distance so that we could obtain more fine-grained recommendations than those recommendations via edit distance. For instance, graphs of two querying solutions with a similar structure can be distinguished in our proposed framework while the edit distance depending on structural difference becomes unable. To this end, we propose a novel score model built on vector space generated in embedding system to compute the similarity between an approximate subgraph matching and a whole graph matching. Finally, we evaluate our approach on large RDF datasets DBpedia and YAGO, and experimental results show that TrQuery exhibits an excellent behavior in terms of both effectiveness and efficiency.

* 17 pages 

  Access Paper or Ask Questions

ObjectNav Revisited: On Evaluation of Embodied Agents Navigating to Objects

Jun 23, 2020
Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, Erik Wijmans

We revisit the problem of Object-Goal Navigation (ObjectNav). In its simplest form, ObjectNav is defined as the task of navigating to an object, specified by its label, in an unexplored environment. In particular, the agent is initialized at a random location and pose in an environment and asked to find an instance of an object category, e.g., find a chair, by navigating to it. As the community begins to show increased interest in semantic goal specification for navigation tasks, a number of different often-inconsistent interpretations of this task are emerging. This document summarizes the consensus recommendations of this working group on ObjectNav. In particular, we make recommendations on subtle but important details of evaluation criteria (for measuring success when navigating towards a target object), the agent's embodiment parameters, and the characteristics of the environments within which the task is carried out. Finally, we provide a detailed description of the instantiation of these recommendations in challenges organized at the Embodied AI workshop at CVPR 2020 \url{} .

  Access Paper or Ask Questions

Learning Contextual Bandits in a Non-stationary Environment

May 23, 2018
Qingyun Wu, Naveen Iyer, Hongning Wang

Multi-armed bandit algorithms have become a reference solution for handling the explore/exploit dilemma in recommender systems, and many other important real-world problems, such as display advertisement. However, such algorithms usually assume a stationary reward distribution, which hardly holds in practice as users' preferences are dynamic. This inevitably costs a recommender system consistent suboptimal performance. In this paper, we consider the situation where the underlying distribution of reward remains unchanged over (possibly short) epochs and shifts at unknown time instants. In accordance, we propose a contextual bandit algorithm that detects possible changes of environment based on its reward estimation confidence and updates its arm selection strategy respectively. Rigorous upper regret bound analysis of the proposed algorithm demonstrates its learning effectiveness in such a non-trivial environment. Extensive empirical evaluations on both synthetic and real-world datasets for recommendation confirm its practical utility in a changing environment.

* 10 pages, 13 figures, To appear on ACM Special Interest Group on Information Retrieval (SIGIR) 2018 

  Access Paper or Ask Questions

Fitting a deeply-nested hierarchical model to a large book review dataset using a moment-based estimator

Jun 01, 2018
Ningshan Zhang, Kyle Schmaus, Patrick O. Perry

We consider a particular instance of a common problem in recommender systems: using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and sub-genres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational: the data sizes are large, and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnetite faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply-nested hierarchical generalized linear mixed models.

* 32 pages, 14 figures 

  Access Paper or Ask Questions

Optimizing generalized Gini indices for fairness in rankings

Apr 14, 2022
Virginie Do, Nicolas Usunier

There is growing interest in designing recommender systems that aim at being fair towards item producers or their least satisfied users. Inspired by the domain of inequality measurement in economics, this paper explores the use of generalized Gini welfare functions (GGFs) as a means to specify the normative criterion that recommender systems should optimize for. GGFs weight individuals depending on their ranks in the population, giving more weight to worse-off individuals to promote equality. Depending on these weights, GGFs minimize the Gini index of item exposure to promote equality between items, or focus on the performance on specific quantiles of least satisfied users. GGFs for ranking are challenging to optimize because they are non-differentiable. We resolve this challenge by leveraging tools from non-smooth optimization and projection operators used in differentiable sorting. We present experiments using real datasets with up to 15k users and items, which show that our approach obtains better trade-offs than the baselines on a variety of recommendation tasks and fairness criteria.

* Accepted to SIGIR 2022 

  Access Paper or Ask Questions

In-game Residential Home Planning via Visual Context-aware Global Relation Learning

Feb 23, 2021
Lijuan Liu, Yin Yang, Yi Yuan, Tianjia Shao, He Wang, Kun Zhou

In this paper, we propose an effective global relation learning algorithm to recommend an appropriate location of a building unit for in-game customization of residential home complex. Given a construction layout, we propose a visual context-aware graph generation network that learns the implicit global relations among the scene components and infers the location of a new building unit. The proposed network takes as input the scene graph and the corresponding top-view depth image. It provides the location recommendations for a newly-added building units by learning an auto-regressive edge distribution conditioned on existing scenes. We also introduce a global graph-image matching loss to enhance the awareness of essential geometry semantics of the site. Qualitative and quantitative experiments demonstrate that the recommended location well reflects the implicit spatial rules of components in the residential estates, and it is instructive and practical to locate the building units in the 3D scene of the complex construction.

  Access Paper or Ask Questions