Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

User-centered Evaluation of Popularity Bias in Recommender Systems

Mar 10, 2021
Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher, Edward Malthouse

Recommendation and ranking systems are known to suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items. Prior research has examined various approaches for mitigating popularity bias and enhancing the recommendation of long-tail, less popular, items. The effectiveness of these approaches is often assessed using different metrics to evaluate the extent to which over-concentration on popular items is reduced. However, not much attention has been given to the user-centered evaluation of this bias; how different users with different levels of interest towards popular items are affected by such algorithms. In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users' perspective and we propose a new metric that can address these limitations. In addition, we present an effective approach that mitigates popularity bias from the user-centered point of view. Finally, we investigate several state-of-the-art approaches proposed in recent years to mitigate popularity bias and evaluate their performances using the existing metrics and also from the users' perspective. Our experimental results using two publicly-available datasets show that existing popularity bias mitigation techniques ignore the users' tolerance towards popular items. Our proposed user-centered method can tackle popularity bias effectively for different users while also improving the existing metrics.

* Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization (UMAP '21), June 21--25, 2021, Utrecht, Netherlands. arXiv admin note: text overlap with arXiv:2007.12230 

  Access Paper or Ask Questions

GRN: Generative Rerank Network for Context-wise Recommendation

Apr 07, 2021
Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, Wenwu Ou

Reranking is attracting incremental attention in the recommender systems, which rearranges the input ranking list into the final rank-ing list to better meet user demands. Most existing methods greedily rerank candidates through the rating scores from point-wise or list-wise models. Despite effectiveness, neglecting the mutual influence between each item and its contexts in the final ranking list often makes the greedy strategy based reranking methods sub-optimal. In this work, we propose a new context-wise reranking framework named Generative Rerank Network (GRN). Specifically, we first design the evaluator, which applies Bi-LSTM and self-attention mechanism to model the contextual information in the labeled final ranking list and predict the interaction probability of each item more precisely. Afterwards, we elaborate on the generator, equipped with GRU, attention mechanism and pointer network to select the item from the input ranking list step by step. Finally, we apply cross-entropy loss to train the evaluator and, subsequently, policy gradient to optimize the generator under the guidance of the evaluator. Empirical results show that GRN consistently and significantly outperforms state-of-the-art point-wise and list-wise methods. Moreover, GRN has achieved a performance improvement of 5.2% on PV and 6.1% on IPV metric after the successful deployment in one popular recommendation scenario of Taobao application.

* Better read with arXiv:2102.12057. arXiv admin note: text overlap with arXiv:2102.12057 

  Access Paper or Ask Questions

Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

Sep 11, 2021
Christian Hansen

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification. (Rest of abstract omitted due to arXiv abstract limit)

* PhD Thesis, University of Copenhagen, Faculty of Science 

  Access Paper or Ask Questions

Artist-driven layering and user's behaviour impact on recommendations in a playlist continuation scenario

Oct 13, 2020
Sebastiano Antenucci, Simone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen Kang, Tommaso Scarlatti, Maurizio Ferrari Dacrema

In this paper we provide an overview of the approach we used as team Creamy Fireflies for the ACM RecSys Challenge 2018. The competition, organized by Spotify, focuses on the problem of playlist continuation, that is suggesting which tracks the user may add to an existing playlist. The challenge addresses this issue in many use cases, from playlist cold start to playlists already composed by up to a hundred tracks. Our team proposes a solution based on a few well known models both content based and collaborative, whose predictions are aggregated via an ensembling step. Moreover by analyzing the underlying structure of the data, we propose a series of boosts to be applied on top of the final predictions and improve the recommendation quality. The proposed approach leverages well-known algorithms and is able to offer a high recommendation quality while requiring a limited amount of computational resources.

* Proceedings of the ACM Recommender Systems Challenge 2018 (RecSys Challenge '18) 
* Source code available here: 

  Access Paper or Ask Questions

DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendation

Jun 21, 2021
Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, Ming Zhang

Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems since it can model rich context information in user-item interactions. Graph neural network is able to encode this rich context information through propagation on the graph. However, existing heterogeneous graph neural networks neglect entanglement of the latent factors stemming from different aspects. Moreover, meta paths in existing approaches are simplified as connecting paths or side information between node pairs, overlooking the rich semantic information in the paths. In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-$N$ recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network. In particular, we use meta relations to decompose high-order connectivity between node pairs and propose a disentangled embedding propagation layer which can iteratively identify the major aspect of meta relations. Our model aggregates corresponding aspect features from each meta relation for the target user/item. With different layers of embedding propagation, DisenHAN is able to explicitly capture the collaborative filtering effect semantically. Extensive experiments on three real-world datasets show that DisenHAN consistently outperforms state-of-the-art approaches. We further demonstrate the effectiveness and interpretability of the learned disentangled representations via insightful case studies and visualization.

* Accepted at CIKM2020 

  Access Paper or Ask Questions

Towards Understanding and Answering Multi-Sentence Recommendation Questions on Tourism

Jan 05, 2018
Danish Contractor, Barun Patra, Mausam Singla, Parag Singla

We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.

  Access Paper or Ask Questions

Fashion Recommendation and Compatibility Prediction Using Relational Network

May 13, 2020
Maryam Moosaei, Yusan Lin, Hao Yang

Fashion is an inherently visual concept and computer vision and artificial intelligence (AI) are playing an increasingly important role in shaping the future of this domain. Many research has been done on recommending fashion products based on the learned user preferences. However, in addition to recommending single items, AI can also help users create stylish outfits from items they already have, or purchase additional items that go well with their current wardrobe. Compatibility is the key factor in creating stylish outfits from single items. Previous studies have mostly focused on modeling pair-wise compatibility. There are a few approaches that consider an entire outfit, but these approaches have limitations such as requiring rich semantic information, category labels, and fixed order of items. Thus, they fail to effectively determine compatibility when such information is not available. In this work, we adopt a Relation Network (RN) to develop new compatibility learning models, Fashion RN and FashionRN-VSE, that addresses the limitations of existing approaches. FashionRN learns the compatibility of an entire outfit, with an arbitrary number of items, in an arbitrary order. We evaluated our model using a large dataset of 49,740 outfits that we collected from Polyvore website. Quantitatively, our experimental results demonstrate state of the art performance compared with alternative methods in the literature in both compatibility prediction and fill-in-the-blank test. Qualitatively, we also show that the item embedding learned by FashionRN indicate the compatibility among fashion items.

  Access Paper or Ask Questions

Physical Exercise Recommendation and Success Prediction Using Interconnected Recurrent Neural Networks

Oct 01, 2020
Arash Mahyari, Peter Pirolli

Unhealthy behaviors, e.g., physical inactivity and unhealthful food choice, are the primary healthcare cost drivers in developed countries. Pervasive computational, sensing, and communication technology provided by smartphones and smartwatches have made it possible to support individuals in their everyday lives to develop healthier lifestyles. In this paper, we propose an exercise recommendation system that also predicts individual success rates . The system, consisting of two inter-connected recurrent neural networks (RNNs), uses the history of workouts to recommend the next workout activity for each individual. The system then predicts the probability of successful completion of the predicted activity by the individual. The prediction accuracy of this interconnected-RNN model is assessed on previously published data from a four-week mobile health experiment and is shown to improve upon previous predictions from a computational cognitive model.

  Access Paper or Ask Questions

On the effectiveness of convolutional autoencoders on image-based personalized recommender systems

Mar 13, 2020
E. Blanco-Mallo, B. Remeseiro, V. Bolón-Canedo, A. Alonso-Betanzos

Recommender systems (RS) are increasingly present in our daily lives, especially since the advent of Big Data, which allows for storing all kinds of information about users' preferences. Personalized RS are successfully applied in platforms such as Netflix, Amazon or YouTube. However, they are missing in gastronomic platforms such as TripAdvisor, where moreover we can find millions of images tagged with users' tastes. This paper explores the potential of using those images as sources of information for modeling users' tastes and proposes an image-based classification system to obtain personalized recommendations, using a convolutional autoencoder as feature extractor. The proposed architecture will be applied to TripAdvisor data, using users' reviews that can be defined as a triad composed by a user, a restaurant, and an image of it taken by the user. Since the dataset is highly unbalanced, the use of data augmentation on the minority class is also considered in the experimentation. Results on data from three cities of different sizes (Santiago de Compostela, Barcelona and New York) demonstrate the effectiveness of using a convolutional autoencoder as feature extractor, instead of the standard deep features computed with convolutional neural networks.

  Access Paper or Ask Questions