Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Towards a Better Understanding of Linear Models for Recommendation

Jun 16, 2021
Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, Yang Zhou

Recently, linear regression models, such as EASE and SLIM, have shown to often produce rather competitive results against more sophisticated deep learning models. On the other side, the (weighted) matrix factorization approaches have been popular choices for recommendation in the past and widely adopted in the industry. In this work, we aim to theoretically understand the relationship between these two approaches, which are the cornerstones of model-based recommendations. Through the derivation and analysis of the closed-form solutions for two basic regression and matrix factorization approaches, we found these two approaches are indeed inherently related but also diverge in how they "scale-down" the singular values of the original user-item interaction matrix. This analysis also helps resolve the questions related to the regularization parameter range and model complexities. We further introduce a new learning algorithm in searching (hyper)parameters for the closed-form solution and utilize it to discover the nearby models of the existing solutions. The experimental results demonstrate that the basic models and their closed-form solutions are indeed quite competitive against the state-of-the-art models, thus, confirming the validity of studying the basic models. The effectiveness of exploring the nearby models are also experimentally validated.


  Access Paper or Ask Questions

Rule-Guided Graph Neural Networks for Recommender Systems

Sep 09, 2020
Xinze Lyu, Guangyao Li, Jiacheng Huang, Wei Hu

To alleviate the cold start problem caused by collaborative filtering in recommender systems, knowledge graphs (KGs) are increasingly employed by many methods as auxiliary resources. However, existing work incorporated with KGs cannot capture the explicit long-range semantics between users and items meanwhile consider various connectivity between items. In this paper, we propose RGRec, which combines rule learning and graph neural networks (GNNs) for recommendation. RGRec first maps items to corresponding entities in KGs and adds users as new entities. Then, it automatically learns rules to model the explicit long-range semantics, and captures the connectivity between entities by aggregation to better encode various information. We show the effectiveness of RGRec on three real-world datasets. Particularly, the combination of rule learning and GNNs achieves substantial improvement compared to methods only using either of them.

* Accepted in the 19th International Semantic Web Conference (ISWC 2020) 

  Access Paper or Ask Questions

Latent Skill Embedding for Personalized Lesson Sequence Recommendation

Feb 23, 2016
Siddharth Reddy, Igor Labutov, Thorsten Joachims

Students in online courses generate large amounts of data that can be used to personalize the learning process and improve quality of education. In this paper, we present the Latent Skill Embedding (LSE), a probabilistic model of students and educational content that can be used to recommend personalized sequences of lessons with the goal of helping students prepare for specific assessments. Akin to collaborative filtering for recommender systems, the algorithm does not require students or content to be described by features, but it learns a representation using access traces. We formulate this problem as a regularized maximum-likelihood embedding of students, lessons, and assessments from historical student-content interactions. An empirical evaluation on large-scale data from Knewton, an adaptive learning technology company, shows that this approach predicts assessment results competitively with benchmark models and is able to discriminate between lesson sequences that lead to mastery and failure.

* Under review by the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 

  Access Paper or Ask Questions

EXTRA: Explanation Ranking Datasets for Explainable Recommendation

Feb 20, 2021
Lei Li, Yongfeng Zhang, Li Chen

Recently, research on explainable recommender systems (RS) has drawn much attention from both academia and industry, resulting in a variety of explainable models. As a consequence, their evaluation approaches vary from model to model, which makes it quite difficult to compare the explainability of different models. To achieve a standard way of evaluating recommendation explanations, we provide three benchmark datasets for EXplanaTion RAnking (denoted as EXTRA), on which explainability can be measured by ranking-oriented metrics. Constructing such datasets, however, presents great challenges. First, user-item-explanation interactions are rare in existing RS, so how to find alternatives becomes a challenge. Our solution is to identify nearly duplicate or even identical sentences from user reviews. This idea then leads to the second challenge, i.e., how to efficiently categorize the sentences in a dataset into different groups, since it has quadratic runtime complexity to estimate the similarity between any two sentences. To mitigate this issue, we provide a more efficient method based on Locality Sensitive Hashing (LSH) that can detect near-duplicates in sub-linear time for a given query. Moreover, we plan to make our code publicly available, to allow other researchers create their own datasets.


  Access Paper or Ask Questions

Context Uncertainty in Contextual Bandits with Applications to Recommender Systems

Feb 16, 2022
Hao Wang, Yifei Ma, Hao Ding, Yuyang Wang

Recurrent neural networks have proven effective in modeling sequential user feedbacks for recommender systems. However, they usually focus solely on item relevance and fail to effectively explore diverse items for users, therefore harming the system performance in the long run. To address this problem, we propose a new type of recurrent neural networks, dubbed recurrent exploration networks (REN), to jointly perform representation learning and effective exploration in the latent space. REN tries to balance relevance and exploration while taking into account the uncertainty in the representations. Our theoretical analysis shows that REN can preserve the rate-optimal sublinear regret even when there exists uncertainty in the learned representations. Our empirical study demonstrates that REN can achieve satisfactory long-term rewards on both synthetic and real-world recommendation datasets, outperforming state-of-the-art models.

* To appear at AAAI 2022 

  Access Paper or Ask Questions

Large-scale Real-time Personalized Similar Product Recommendations

Apr 12, 2020
Zhi Liu, Yan Huang, Jing Gao, Li Chen, Dong Li

Similar product recommendation is one of the most common scenes in e-commerce. Many recommendation algorithms such as item-to-item Collaborative Filtering are working on measuring item similarities. In this paper, we introduce our real-time personalized algorithm to model product similarity and real-time user interests. We also introduce several other baseline algorithms including an image-similarity-based method, item-to-item collaborative filtering, and item2vec, and compare them on our large-scale real-world e-commerce dataset. The algorithms which achieve good offline results are also tested on the online e-commerce website. Our personalized method achieves a 10% improvement on the add-cart number in the real-world e-commerce scenario.


  Access Paper or Ask Questions

An Artificial Immune System as a Recommender System for Web Sites

Apr 03, 2008
Tom Morrison, Uwe Aickelin

Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.

* Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS 2002), pp 161-169, Canterbury, UK, 2002 

  Access Paper or Ask Questions

PrivNet: Safeguarding Private Attributes in Transfer Learning for Recommendation

Oct 16, 2020
Guangneng Hu, Qiang Yang

Transfer learning is an effective technique to improve a target recommender system with the knowledge from a source domain. Existing research focuses on the recommendation performance of the target domain while ignores the privacy leakage of the source domain. The transferred knowledge, however, may unintendedly leak private information of the source domain. For example, an attacker can accurately infer user demographics from their historical purchase provided by a source domain data owner. This paper addresses the above privacy-preserving issue by learning a privacy-aware neural representation by improving target performance while protecting source privacy. The key idea is to simulate the attacks during the training for protecting unseen users' privacy in the future, modeled by an adversarial game, so that the transfer learning model becomes robust to attacks. Experiments show that the proposed PrivNet model can successfully disentangle the knowledge benefitting the transfer from leaking the privacy.

* Findings of EMNLP 2020 

  Access Paper or Ask Questions

<<
169
170
171
172
173
174
175
176
177
178
179
180
181
>>