Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Neural Emoji Recommendation in Dialogue Systems

Dec 14, 2016
Ruobing Xie, Zhiyuan Liu, Rui Yan, Maosong Sun

Emoji is an essential component in dialogues which has been broadly utilized on almost all social platforms. It could express more delicate feelings beyond plain texts and thus smooth the communications between users, making dialogue systems more anthropomorphic and vivid. In this paper, we focus on automatically recommending appropriate emojis given the contextual information in multi-turn dialogue systems, where the challenges locate in understanding the whole conversations. More specifically, we propose the hierarchical long short-term memory model (H-LSTM) to construct dialogue representations, followed by a softmax classifier for emoji classification. We evaluate our models on the task of emoji classification in a real-world dataset, with some further explorations on parameter sensitivity and case study. Experimental results demonstrate that our method achieves the best performances on all evaluation metrics. It indicates that our method could well capture the contextual information and emotion flow in dialogues, which is significant for emoji recommendation.

* 7 pages 

  Access Paper or Ask Questions

Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment

Sep 22, 2021
Eli Ben-Michael, D. James Greiner, Kosuke Imai, Zhichao Jiang

Algorithmic recommendations and decisions have become ubiquitous in today's society. Many of these and other data-driven policies are based on known, deterministic rules to ensure their transparency and interpretability. This is especially true when such policies are used for public policy decision-making. For example, algorithmic pre-trial risk assessments, which serve as our motivating application, provide relatively simple, deterministic classification scores and recommendations to help judges make release decisions. Unfortunately, existing methods for policy learning are not applicable because they require existing policies to be stochastic rather than deterministic. We develop a robust optimization approach that partially identifies the expected utility of a policy, and then finds an optimal policy by minimizing the worst-case regret. The resulting policy is conservative but has a statistical safety guarantee, allowing the policy-maker to limit the probability of producing a worse outcome than the existing policy. We extend this approach to common and important settings where humans make decisions with the aid of algorithmic recommendations. Lastly, we apply the proposed methodology to a unique field experiment on pre-trial risk assessments. We derive new classification and recommendation rules that retain the transparency and interpretability of the existing risk assessment instrument while potentially leading to better overall outcomes at a lower cost.


  Access Paper or Ask Questions

Dynamic Graph Collaborative Filtering

Jan 08, 2021
Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, Philip S. Yu

Dynamic recommendation is essential for modern recommender systems to provide real-time predictions based on sequential data. In real-world scenarios, the popularity of items and interests of users change over time. Based on this assumption, many previous works focus on interaction sequences and learn evolutionary embeddings of users and items. However, we argue that sequence-based models are not able to capture collaborative information among users and items directly. Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations of both items and users at the same time. We propose three update mechanisms: zero-order 'inheritance', first-order 'propagation', and second-order 'aggregation', to represent the impact on a user or item when a new interaction occurs. Based on them, we update related user and item embeddings simultaneously when interactions occur in turn, and then use the latest embeddings to make recommendations. Extensive experiments conducted on three public datasets show that DGCF significantly outperforms the state-of-the-art dynamic recommendation methods up to 30. Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.

* ICDM 2020 Regular paper 

  Access Paper or Ask Questions

A Collaborative Approach to Angel and Venture Capital Investment Recommendations

Jul 26, 2018
Xinyi Liu, Artit Wangperawong

Matrix factorization was used to generate investment recommendations for investors. An iterative conjugate gradient method was used to optimize the regularized squared-error loss function. The number of latent factors, number of iterations, and regularization values were explored. Overfitting can be addressed by either early stopping or regularization parameter tuning. The model achieved the highest average prediction accuracy of 13.3%. With a similar model, the same dataset was used to generate investor recommendations for companies undergoing fundraising, which achieved highest prediction accuracy of 11.1%.


  Access Paper or Ask Questions

Incentivising Exploration and Recommendations for Contextual Bandits with Payments

Jan 22, 2020
Priyank Agrawal, Theja Tulabandhula

We propose a contextual bandit based model to capture the learning and social welfare goals of a web platform in the presence of myopic users. By using payments to incentivize these agents to explore different items/recommendations, we show how the platform can learn the inherent attributes of items and achieve a sublinear regret while maximizing cumulative social welfare. We also calculate theoretical bounds on the cumulative costs of incentivization to the platform. Unlike previous works in this domain, we consider contexts to be completely adversarial, and the behavior of the adversary is unknown to the platform. Our approach can improve various engagement metrics of users on e-commerce stores, recommendation engines and matching platforms.

* 11 pages, 4 figures 

  Access Paper or Ask Questions

Inductive Representation Based Graph Convolution Network for Collaborative Filtering

Jul 12, 2021
Yunfan Wu, Qi Cao, Huawei Shen, Shuchang Tao, Xueqi Cheng

In recent years, graph neural networks (GNNs) have shown powerful ability in collaborative filtering, which is a widely adopted recommendation scenario. While without any side information, existing graph neural network based methods generally learn a one-hot embedding for each user or item as the initial input representation of GNNs. However, such one-hot embedding is intrinsically transductive, making these methods with no inductive ability, i.e., failing to deal with new users or new items that are unseen during training. Besides, the number of model parameters depends on the number of users and items, which is expensive and not scalable. In this paper, we give a formal definition of inductive recommendation and solve the above problems by proposing Inductive representation based Graph Convolutional Network (IGCN) for collaborative filtering. Specifically, we design an inductive representation layer, which utilizes the interaction behavior with core users or items as the initial representation, improving the general recommendation performance while bringing inductive ability. Note that, the number of parameters of IGCN only depends on the number of core users or items, which is adjustable and scalable. Extensive experiments on three public benchmarks demonstrate the state-of-the-art performance of IGCN in both transductive and inductive recommendation scenarios, while with remarkably fewer model parameters. Our implementations are available here in PyTorch.


  Access Paper or Ask Questions

Large-Scale Network Embedding in Apache Spark

Jun 20, 2021
Wenqing Lin

Network embedding has been widely used in social recommendation and network analysis, such as recommendation systems and anomaly detection with graphs. However, most of previous approaches cannot handle large graphs efficiently, due to that (i) computation on graphs is often costly and (ii) the size of graph or the intermediate results of vectors could be prohibitively large, rendering it difficult to be processed on a single machine. In this paper, we propose an efficient and effective distributed algorithm for network embedding on large graphs using Apache Spark, which recursively partitions a graph into several small-sized subgraphs to capture the internal and external structural information of nodes, and then computes the network embedding for each subgraph in parallel. Finally, by aggregating the outputs on all subgraphs, we obtain the embeddings of nodes in a linear cost. After that, we demonstrate in various experiments that our proposed approach is able to handle graphs with billions of edges within a few hours and is at least 4 times faster than the state-of-the-art approaches. Besides, it achieves up to $4.25\%$ and $4.27\%$ improvements on link prediction and node classification tasks respectively. In the end, we deploy the proposed algorithms in two online games of Tencent with the applications of friend recommendation and item recommendation, which improve the competitors by up to $91.11\%$ in running time and up to $12.80\%$ in the corresponding evaluation metrics.

* Accepted in KDD 2021 

  Access Paper or Ask Questions

TransRev: Modeling Reviews as Translations from Users to Items

Apr 18, 2018
Alberto Garcia-Duran, Roberto Gonzalez, Daniel Onoro-Rubio, Mathias Niepert, Hui Li

The text of a review expresses the sentiment a customer has towards a particular product. This is exploited in sentiment analysis where machine learning models are used to predict the review score from the text of the review. Furthermore, the products costumers have purchased in the past are indicative of the products they will purchase in the future. This is what recommender systems exploit by learning models from purchase information to predict the items a customer might be interested in. We propose TransRev, an approach to the product recommendation problem that integrates ideas from recommender systems, sentiment analysis, and multi-relational learning into a joint learning objective. TransRev learns vector representations for users, items, and reviews. The embedding of a review is learned such that (a) it performs well as input feature of a regression model for sentiment prediction; and (b) it always translates the reviewer embedding to the embedding of the reviewed items. This allows TransRev to approximate a review embedding at test time as the difference of the embedding of each item and the user embedding. The approximated review embedding is then used with the regression model to predict the review score for each item. TransRev outperforms state of the art recommender systems on a large number of benchmark data sets. Moreover, it is able to retrieve, for each user and item, the review text from the training set whose embedding is most similar to the approximated review embedding.


  Access Paper or Ask Questions

Quick Lists: Enriched Playlist Embeddings for Future Playlist Recommendation

Jun 17, 2020
Brett Vintch

Recommending playlists to users in the context of a digital music service is a difficult task because a playlist is often more than the mere sum of its parts. We present a novel method for generating playlist embeddings that are invariant to playlist length and sensitive to local and global track ordering. The embeddings also capture information about playlist sequencing, and are enriched with side information about the playlist user. We show that these embeddings are useful for generating next-best playlist recommendations, and that side information can be used for the cold start problem.


  Access Paper or Ask Questions

Split-door criterion: Identification of causal effects through auxiliary outcomes

Jun 14, 2018
Amit Sharma, Jake M. Hofman, Duncan J. Watts

We present a method for estimating causal effects in time series data when fine-grained information about the outcome of interest is available. Specifically, we examine what we call the split-door setting, where the outcome variable can be split into two parts: one that is potentially affected by the cause being studied and another that is independent of it, with both parts sharing the same (unobserved) confounders. We show that under these conditions, the problem of identification reduces to that of testing for independence among observed variables, and present a method that uses this approach to automatically find subsets of the data that are causally identified. We demonstrate the method by estimating the causal impact of Amazon's recommender system on traffic to product pages, finding thousands of examples within the dataset that satisfy the split-door criterion. Unlike past studies based on natural experiments that were limited to a single product category, our method applies to a large and representative sample of products viewed on the site. In line with previous work, we find that the widely-used click-through rate (CTR) metric overestimates the causal impact of recommender systems; depending on the product category, we estimate that 50-80\% of the traffic attributed to recommender systems would have happened even without any recommendations. We conclude with guidelines for using the split-door criterion as well as a discussion of other contexts where the method can be applied.


  Access Paper or Ask Questions

<<
161
162
163
164
165
166
167
168
169
170
171
172
173
>>