Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Recommending Investors for Crowdfunding Projects

Oct 12, 2014
Jisun An, Daniele Quercia, Jon Crowcroft

To bring their innovative ideas to market, those embarking in new ventures have to raise money, and, to do so, they have often resorted to banks and venture capitalists. Nowadays, they have an additional option: that of crowdfunding. The name refers to the idea that funds come from a network of people on the Internet who are passionate about supporting others' projects. One of the most popular crowdfunding sites is Kickstarter. In it, creators post descriptions of their projects and advertise them on social media sites (mainly Twitter), while investors look for projects to support. The most common reason for project failure is the inability of founders to connect with a sufficient number of investors, and that is mainly because hitherto there has not been any automatic way of matching creators and investors. We thus set out to propose different ways of recommending investors found on Twitter for specific Kickstarter projects. We do so by conducting hypothesis-driven analyses of pledging behavior and translate the corresponding findings into different recommendation strategies. The best strategy achieves, on average, 84% of accuracy in predicting a list of potential investors' Twitter accounts for any given project. Our findings also produced key insights about the whys and wherefores of investors deciding to support innovative efforts.

* Published in Proc. of WWW 2014 

  Access Paper or Ask Questions

Adversarial learning for product recommendation

Jul 07, 2020
Joel R. Bock, Akhilesh Maewal

Product recommendation can be considered as a problem in data fusion-- estimation of the joint distribution between individuals, their behaviors, and goods or services of interest. This work proposes a conditional, coupled generative adversarial network (RecommenderGAN) that learns to produce samples from a joint distribution between (view, buy) behaviors found in extremely sparse implicit feedback training data. User interaction is represented by two matrices having binary-valued elements. In each matrix, nonzero values indicate whether a user viewed or bought a specific item in a given product category, respectively. By encoding actions in this manner, the model is able to represent entire, large scale product catalogs. Conversion rate statistics computed on trained GAN output samples ranged from 1.323 to 1.763 percent. These statistics are found to be significant in comparison to null hypothesis testing results. The results are shown comparable to published conversion rates aggregated across many industries and product types. Our results are preliminary, however they suggest that the recommendations produced by the model may provide utility for consumers and digital retailers.

  Access Paper or Ask Questions

Toward Explainable Fashion Recommendation

Jan 15, 2019
Pongsate Tangseng, Takayuki Okatani

Many studies have been conducted so far to build systems for recommending fashion items and outfits. Although they achieve good performances in their respective tasks, most of them cannot explain their judgments to the users, which compromises their usefulness. Toward explainable fashion recommendation, this study proposes a system that is able not only to provide a goodness score for an outfit but also to explain the score by providing reason behind it. For this purpose, we propose a method for quantifying how influential each feature of each item is to the score. Using this influence value, we can identify which item and what feature make the outfit good or bad. We represent the image of each item with a combination of human-interpretable features, and thereby the identification of the most influential item-feature pair gives useful explanation of the output score. To evaluate the performance of this approach, we design an experiment that can be performed without human annotation; we replace a single item-feature pair in an outfit so that the score will decrease, and then we test if the proposed method can detect the replaced item correctly using the above influence values. The experimental results show that the proposed method can accurately detect bad items in outfits lowering their scores.

  Access Paper or Ask Questions

The Decision-Theoretic Interactive Video Advisor

Jan 23, 2013
Hien Nguyen, Peter Haddawy

The need to help people choose among large numbers of items and to filter through large amounts of information has led to a flood of research in construction of personal recommendation agents. One of the central issues in constructing such agents is the representation and elicitation of user preferences or interests. This topic has long been studied in Decision Theory, but surprisingly little work in the area of recommender systems has made use of formal decision-theoretic techniques. This paper describes DIVA, a decision-theoretic agent for recommending movies that contains a number of novel features. DIVA represents user preferences using pairwise comparisons among items, rather than numeric ratings. It uses a novel similarity measure based on the concept of the probability of conflict between two orderings of items. The system has a rich representation of preference, distinguishing between a user's general taste in movies and his immediate interests. It takes an incremental approach to preference elicitation in which the user can provide feedback if not satisfied with the recommendation list. We empirically evaluate the performance of the system using the EachMovie collaborative filtering database.

* Appears in Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999) 

  Access Paper or Ask Questions

The Cold-start Problem: Minimal Users' Activity Estimation

May 31, 2021
Juraj Visnovsky, Ondrej Kassak, Michal Kompan, Maria Bielikova

Cold-start problem, which arises upon the new users arrival, is one of the fundamental problems in today's recommender approaches. Moreover, in some domains as TV or multime-dia-items take long time to experience by users, thus users usually do not provide rich preference information. In this paper we analyze the minimal amount of ratings needs to be done by a user over a set of items, in order to solve or reduce the cold-start problem. In our analysis we applied clustering data mining technique in order to identify minimal amount of item's ratings required from recommender system's users, in order to be assigned to a correct cluster. In this context, cluster quality is being monitored and in case of reaching certain cluster quality threshold, the rec-ommender system could start to generate recommendations for given user, as in this point cold-start problem is considered as resolved. Our proposed approach is applicable to any domain in which user preferences are received based on explicit items rating. Our experiments are performed within the movie and jokes recommendation domain using the MovieLens and Jester dataset.

* 1st Workshop on Recommender Systems for Television and online Video (RecSysTV) in conjunction with 8th ACM Conference on Recommender Systems, 2014 

  Access Paper or Ask Questions

Collaborative Filtering Bandits

May 31, 2016
Shuai Li, Alexandros Karatzoglou, Claudio Gentile

Classical collaborative filtering, and content-based filtering methods try to learn a static recommendation model given training data. These approaches are far from ideal in highly dynamic recommendation domains such as news recommendation and computational advertisement, where the set of items and users is very fluid. In this work, we investigate an adaptive clustering technique for content recommendation based on exploration-exploitation strategies in contextual multi-armed bandit settings. Our algorithm takes into account the collaborative effects that arise due to the interaction of the users with the items, by dynamically grouping users based on the items under consideration and, at the same time, grouping items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of preference patterns in the data in a way akin to collaborative filtering methods. We provide an empirical analysis on medium-size real-world datasets, showing scalability and increased prediction performance (as measured by click-through rate) over state-of-the-art methods for clustering bandits. We also provide a regret analysis within a standard linear stochastic noise setting.

* The 39th SIGIR (SIGIR 2016) 

  Access Paper or Ask Questions

Reducing Offline Evaluation Bias in Recommendation Systems

Jul 03, 2014
Arnaud De Myttenaere, Bénédicte Le Grand, Boris Golden, Fabrice Rossi

Recommendation systems have been integrated into the majority of large online systems. They tailor those systems to individual users by filtering and ranking information according to user profiles. This adaptation process influences the way users interact with the system and, as a consequence, increases the difficulty of evaluating a recommendation algorithm with historical data (via offline evaluation). This paper analyses this evaluation bias and proposes a simple item weighting solution that reduces its impact. The efficiency of the proposed solution is evaluated on real world data extracted from Viadeo professional social network.

* 23rd annual Belgian-Dutch Conference on Machine Learning (Benelearn 2014), Bruxelles : Belgium (2014) 

  Access Paper or Ask Questions

Using Wikipedia to Boost SVD Recommender Systems

Dec 05, 2012
Gilad Katz, Guy Shani, Bracha Shapira, Lior Rokach

Singular Value Decomposition (SVD) has been used successfully in recent years in the area of recommender systems. In this paper we present how this model can be extended to consider both user ratings and information from Wikipedia. By mapping items to Wikipedia pages and quantifying their similarity, we are able to use this information in order to improve recommendation accuracy, especially when the sparsity is high. Another advantage of the proposed approach is the fact that it can be easily integrated into any other SVD implementation, regardless of additional parameters that may have been added to it. Preliminary experimental results on the MovieLens dataset are encouraging.

  Access Paper or Ask Questions

Evaluation Metrics for Item Recommendation under Sampling

Dec 04, 2019
Steffen Rendle

The task of item recommendation requires ranking a large catalogue of items given a context. Item recommendation algorithms are evaluated using ranking metrics that depend on the positions of relevant items. To speed up the computation of metrics, recent work often uses sampled metrics where only a smaller set of random items and the relevant items are ranked. This paper investigates sampled metrics in more detail and shows that sampled metrics are inconsistent with their exact version. Sampled metrics do not persist relative statements, e.g., 'algorithm A is better than B', not even in expectation. Moreover the smaller the sampling size, the less difference between metrics, and for very small sampling size, all metrics collapse to the AUC metric.

  Access Paper or Ask Questions

A Content-Based Approach to Email Triage Action Prediction: Exploration and Evaluation

Apr 30, 2019
Sudipto Mukherjee, Ke Jiang

Email has remained a principal form of communication among people, both in enterprise and social settings. With a deluge of emails crowding our mailboxes daily, there is a dire need of smart email systems that can recover important emails and make personalized recommendations. In this work, we study the problem of predicting user triage actions to incoming emails where we take the reply prediction as a working example. Different from existing methods, we formulate the triage action prediction as a recommendation problem and focus on the content-based approach, where the users are represented using the content of current and past emails. We also introduce additional similarity features to further explore the affinities between users and emails. Experiments on the publicly available Avocado email collection demonstrate the advantages of our proposed recommendation framework and our method is able to achieve better performance compared to the state-of-the-art deep recommendation methods. More importantly, we provide valuable insight into the effectiveness of different textual and user representations and show that traditional bag-of-words approaches, with the help from the similarity features, compete favorably with the more advanced neural embedding methods.

* User representations, Personalization, Email response prediction, Similarity features 

  Access Paper or Ask Questions