Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Using Wikipedia to Boost SVD Recommender Systems

Dec 05, 2012
Gilad Katz, Guy Shani, Bracha Shapira, Lior Rokach

Singular Value Decomposition (SVD) has been used successfully in recent years in the area of recommender systems. In this paper we present how this model can be extended to consider both user ratings and information from Wikipedia. By mapping items to Wikipedia pages and quantifying their similarity, we are able to use this information in order to improve recommendation accuracy, especially when the sparsity is high. Another advantage of the proposed approach is the fact that it can be easily integrated into any other SVD implementation, regardless of additional parameters that may have been added to it. Preliminary experimental results on the MovieLens dataset are encouraging.

  Access Paper or Ask Questions

Evaluation Metrics for Item Recommendation under Sampling

Dec 04, 2019
Steffen Rendle

The task of item recommendation requires ranking a large catalogue of items given a context. Item recommendation algorithms are evaluated using ranking metrics that depend on the positions of relevant items. To speed up the computation of metrics, recent work often uses sampled metrics where only a smaller set of random items and the relevant items are ranked. This paper investigates sampled metrics in more detail and shows that sampled metrics are inconsistent with their exact version. Sampled metrics do not persist relative statements, e.g., 'algorithm A is better than B', not even in expectation. Moreover the smaller the sampling size, the less difference between metrics, and for very small sampling size, all metrics collapse to the AUC metric.

  Access Paper or Ask Questions

A Content-Based Approach to Email Triage Action Prediction: Exploration and Evaluation

Apr 30, 2019
Sudipto Mukherjee, Ke Jiang

Email has remained a principal form of communication among people, both in enterprise and social settings. With a deluge of emails crowding our mailboxes daily, there is a dire need of smart email systems that can recover important emails and make personalized recommendations. In this work, we study the problem of predicting user triage actions to incoming emails where we take the reply prediction as a working example. Different from existing methods, we formulate the triage action prediction as a recommendation problem and focus on the content-based approach, where the users are represented using the content of current and past emails. We also introduce additional similarity features to further explore the affinities between users and emails. Experiments on the publicly available Avocado email collection demonstrate the advantages of our proposed recommendation framework and our method is able to achieve better performance compared to the state-of-the-art deep recommendation methods. More importantly, we provide valuable insight into the effectiveness of different textual and user representations and show that traditional bag-of-words approaches, with the help from the similarity features, compete favorably with the more advanced neural embedding methods.

* User representations, Personalization, Email response prediction, Similarity features 

  Access Paper or Ask Questions

Topology Distillation for Recommender System

Jun 16, 2021
SeongKu Kang, Junyoung Hwang, Wonbin Kweon, Hwanjo Yu

Recommender Systems (RS) have employed knowledge distillation which is a model compression technique training a compact student model with the knowledge transferred from a pre-trained large teacher model. Recent work has shown that transferring knowledge from the teacher's intermediate layer significantly improves the recommendation quality of the student. However, they transfer the knowledge of individual representation point-wise and thus have a limitation in that primary information of RS lies in the relations in the representation space. This paper proposes a new topology distillation approach that guides the student by transferring the topological structure built upon the relations in the teacher space. We first observe that simply making the student learn the whole topological structure is not always effective and even degrades the student's performance. We demonstrate that because the capacity of the student is highly limited compared to that of the teacher, learning the whole topological structure is daunting for the student. To address this issue, we propose a novel method named Hierarchical Topology Distillation (HTD) which distills the topology hierarchically to cope with the large capacity gap. Our extensive experiments on real-world datasets show that the proposed method significantly outperforms the state-of-the-art competitors. We also provide in-depth analyses to ascertain the benefit of distilling the topology for RS.

* KDD 2021. 9 pages + appendix (2 pages). 8 figures 

  Access Paper or Ask Questions

Transfer Learning for Algorithm Recommendation

Oct 15, 2019
Gean Trindade Pereira, Moisés dos Santos, Edesio Alcobaça, Rafael Mantovani, André Carvalho

Meta-Learning is a subarea of Machine Learning that aims to take advantage of prior knowledge to learn faster and with fewer data [1]. There are different scenarios where meta-learning can be applied, and one of the most common is algorithm recommendation, where previous experience on applying machine learning algorithms for several datasets can be used to learn which algorithm, from a set of options, would be more suitable for a new dataset [2]. Perhaps the most popular form of meta-learning is transfer learning, which consists of transferring knowledge acquired by a machine learning algorithm in a previous learning task to increase its performance faster in another and similar task [3]. Transfer Learning has been widely applied in a variety of complex tasks such as image classification, machine translation and, speech recognition, achieving remarkable results [4,5,6,7,8]. Although transfer learning is very used in traditional or base-learning, it is still unknown if it is useful in a meta-learning setup. For that purpose, in this paper, we investigate the effects of transferring knowledge in the meta-level instead of base-level. Thus, we train a neural network on meta-datasets related to algorithm recommendation, and then using transfer learning, we reuse the knowledge learned by the neural network in other similar datasets from the same domain, to verify how transferable is the acquired meta-knowledge.

* Short-paper accepted in LXAI Research Workshop co-located with NeurIPS 2019 

  Access Paper or Ask Questions

Neural Graph Matching based Collaborative Filtering

May 10, 2021
Yixin Su, Rui Zhang, Sarah Erfani, Junhao Gan

User and item attributes are essential side-information; their interactions (i.e., their co-occurrence in the sample data) can significantly enhance prediction accuracy in various recommender systems. We identify two different types of attribute interactions, inner interactions and cross interactions: inner interactions are those between only user attributes or those between only item attributes; cross interactions are those between user attributes and item attributes. Existing models do not distinguish these two types of attribute interactions, which may not be the most effective way to exploit the information carried by the interactions. To address this drawback, we propose a neural Graph Matching based Collaborative Filtering model (GMCF), which effectively captures the two types of attribute interactions through modeling and aggregating attribute interactions in a graph matching structure for recommendation. In our model, the two essential recommendation procedures, characteristic learning and preference matching, are explicitly conducted through graph learning (based on inner interactions) and node matching (based on cross interactions), respectively. Experimental results show that our model outperforms state-of-the-art models. Further studies verify the effectiveness of GMCF in improving the accuracy of recommendation.

* 10 pages, 6 figures, 4 tables, SIGIR 2021 

  Access Paper or Ask Questions

Learning-based Computer-aided Prescription Model for Parkinson's Disease: A Data-driven Perspective

Jul 31, 2020
Yinghuan Shi, Wanqi Yang, Kim-Han Thung, Hao Wang, Yang Gao, Yang Pan, Li Zhang, Dinggang Shen

In this paper, we study a novel problem: "automatic prescription recommendation for PD patients." To realize this goal, we first build a dataset by collecting 1) symptoms of PD patients, and 2) their prescription drug provided by neurologists. Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug. Finally, for the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model. From the methodology part, our proposed model, namely Prescription viA Learning lAtent Symptoms (PALAS), could recommend prescription using the multi-modality representation of the data. In PALAS, a latent symptom space is learned to better model the relationship between symptoms and prescription drug, as there is a large semantic gap between them. Moreover, we present an efficient alternating optimization method for PALAS. We evaluated our method using the data collected from 136 PD patients at Nanjing Brain Hospital, which can be regarded as a large dataset in PD research community. The experimental results demonstrate the effectiveness and clinical potential of our method in this recommendation task, if compared with other competing methods.

* IEEE JBHI 2020 

  Access Paper or Ask Questions

Incentivizing Compliance with Algorithmic Instruments

Jul 28, 2021
Daniel Ngo, Logan Stapleton, Vasilis Syrgkanis, Zhiwei Steven Wu

Randomized experiments can be susceptible to selection bias due to potential non-compliance by the participants. While much of the existing work has studied compliance as a static behavior, we propose a game-theoretic model to study compliance as dynamic behavior that may change over time. In rounds, a social planner interacts with a sequence of heterogeneous agents who arrive with their unobserved private type that determines both their prior preferences across the actions (e.g., control and treatment) and their baseline rewards without taking any treatment. The planner provides each agent with a randomized recommendation that may alter their beliefs and their action selection. We develop a novel recommendation mechanism that views the planner's recommendation as a form of instrumental variable (IV) that only affects an agents' action selection, but not the observed rewards. We construct such IVs by carefully mapping the history -- the interactions between the planner and the previous agents -- to a random recommendation. Even though the initial agents may be completely non-compliant, our mechanism can incentivize compliance over time, thereby enabling the estimation of the treatment effect of each treatment, and minimizing the cumulative regret of the planner whose goal is to identify the optimal treatment.

* In Proceedings of the Thirty-eighth International Conference on Machine Learning (ICML 2021), 17 pages of main text, 53 pages total, 3 figures 

  Access Paper or Ask Questions

Heterogeneous Edge Embeddings for Friend Recommendation

Feb 07, 2019
Janu Verma, Srishti Gupta, Debdoot Mukherjee, Tanmoy Chakraborty

We propose a friend recommendation system (an application of link prediction) using edge embeddings on social networks. Most real-world social networks are multi-graphs, where different kinds of relationships (e.g. chat, friendship) are possible between a pair of users. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We propose a method to mine network representation that effectively exploits heterogeneity in multi-graphs. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users. Our method outperforms various state-of-the-art baselines on Hike's social network in terms of accuracy as well as user satisfaction.

* To appear in ECIR, 2019 

  Access Paper or Ask Questions