Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Contrastive Self-supervised Sequential Recommendation with Robust Augmentation

Aug 14, 2021
Zhiwei Liu, Yongjun Chen, Jia Li, Philip S. Yu, Julian McAuley, Caiming Xiong

Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data. At their core, such approaches model transition probabilities between items in a sequence, whether through Markov chains, recurrent networks, or more recently, Transformers. However both old and new issues remain, including data-sparsity and noisy data; such issues can impair the performance, especially in complex, parameter-hungry models. In this paper, we investigate the application of contrastive Self-Supervised Learning (SSL) to the sequential recommendation, as a way to alleviate some of these issues. Contrastive SSL constructs augmentations from unlabelled instances, where agreements among positive pairs are maximized. It is challenging to devise a contrastive SSL framework for a sequential recommendation, due to its discrete nature, correlations among items, and skewness of length distributions. To this end, we propose a novel framework, Contrastive Self-supervised Learning for sequential Recommendation (CoSeRec). We introduce two informative augmentation operators leveraging item correlations to create high-quality views for contrastive learning. Experimental results on three real-world datasets demonstrate the effectiveness of the proposed method on improving model performance and the robustness against sparse and noisy data. Our implementation is available online at \url{https://github.com/YChen1993/CoSeRec}

* Under-review. Work done during Zhiwei's intern at Salesforce. Inc 

  Access Paper or Ask Questions

Session-based Recommendation with Heterogeneous Graph Neural Network

Aug 12, 2021
Jinpeng Chen, Haiyang Li, Fan Zhang, Senzhang Wang, Kaimin Wei

The purpose of the Session-Based Recommendation System is to predict the user's next click according to the previous session sequence. The current studies generally learn user preferences according to the transitions of items in the user's session sequence. However, other effective information in the session sequence, such as user profiles, are largely ignored which may lead to the model unable to learn the user's specific preferences. In this paper, we propose a heterogeneous graph neural network-based session recommendation method, named SR-HetGNN, which can learn session embeddings by heterogeneous graph neural network (HetGNN), and capture the specific preferences of anonymous users. Specifically, SR-HetGNN first constructs heterogeneous graphs containing various types of nodes according to the session sequence, which can capture the dependencies among items, users, and sessions. Second, HetGNN captures the complex transitions between items and learns the item embeddings containing user information. Finally, to consider the influence of users' long and short-term preferences, local and global session embeddings are combined with the attentional network to obtain the final session embedding. SR-HetGNN is shown to be superior to the existing state-of-the-art session-based recommendation methods through extensive experiments over two real large datasets Diginetica and Tmall.


  Access Paper or Ask Questions

Check-N-Run: A Checkpointing System for Training Recommendation Models

Oct 17, 2020
Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Murali Annavaram, Krishnakumar Nair, Misha Smelyanskiy

Checkpoints play an important role in training recommendation systems at scale. They are important for many use cases, including failure recovery to ensure rapid training progress, and online training to improve inference prediction accuracy. Checkpoints are typically written to remote, persistent storage. Given the typically large and ever-increasing recommendation model sizes, the checkpoint frequency and effectiveness is often bottlenecked by the storage write bandwidth and capacity, as well as the network bandwidth. We present Check-N-Run, a scalable checkpointing system for training large recommendation models. Check-N-Run uses two primary approaches to address these challenges. First, it applies incremental checkpointing, which tracks and checkpoints the modified part of the model. On top of that, it leverages quantization techniques to significantly reduce the checkpoint size, without degrading training accuracy. These techniques allow Check-N-Run to reduce the required write bandwidth by 6-17x and the required capacity by 2.5-8x on real-world models at Facebook, and thereby significantly improve checkpoint capabilities while reducing the total cost of ownership.


  Access Paper or Ask Questions

LambdaOpt: Learn to Regularize Recommender Models in Finer Levels

May 28, 2019
Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, Yue Wang

Recommendation models mainly deal with categorical variables, such as user/item ID and attributes. Besides the high-cardinality issue, the interactions among such categorical variables are usually long-tailed, with the head made up of highly frequent values and a long tail of rare ones. This phenomenon results in the data sparsity issue, making it essential to regularize the models to ensure generalization. The common practice is to employ grid search to manually tune regularization hyperparameters based on the validation data. However, it requires non-trivial efforts and large computation resources to search the whole candidate space; even so, it may not lead to the optimal choice, for which different parameters should have different regularization strengths. In this paper, we propose a hyperparameter optimization method, LambdaOpt, which automatically and adaptively enforces regularization during training. Specifically, it updates the regularization coefficients based on the performance of validation data. With LambdaOpt, the notorious tuning of regularization hyperparameters can be avoided; more importantly, it allows fine-grained regularization (i.e. each parameter can have an individualized regularization coefficient), leading to better generalized models. We show how to employ LambdaOpt on matrix factorization, a classical model that is representative of a large family of recommender models. Extensive experiments on two public benchmarks demonstrate the superiority of our method in boosting the performance of top-K recommendation.

* Accepted by KDD 2019 

  Access Paper or Ask Questions

Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach

Apr 20, 2022
Ling Huang, Can-Rong Guan, Zhen-Wei Huang, Yuefang Gao, Yingjie Kuang, Chang-Dong Wang, C. L. Philip Chen

Recently, Deep Neural Networks (DNNs) have been widely introduced into Collaborative Filtering (CF) to produce more accurate recommendation results due to their capability of capturing the complex nonlinear relationships between items and users.However, the DNNs-based models usually suffer from high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we propose a new broad recommender system called Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items, which can avoid the above issues while achieving very satisfactory recommendation performance. However, it is not feasible to directly feed the original rating data into BLS. To this end, we propose a user-item rating collaborative vector preprocessing procedure to generate low-dimensional user-item input data, which is able to harness quality judgments of the most similar users/items. Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm


  Access Paper or Ask Questions

New Recommendation Algorithm for Implicit Data Motivated by the Multivariate Normal Distribution

Dec 21, 2020
Markus Viljanen, Tapio Pahikkala

The goal of recommender systems is to help users find useful items from a large catalog of items by producing a list of item recommendations for every user. Data sets based on implicit data collection have a number of special characteristics. The user and item interaction matrix is often complete, i.e. every user and item pair has an interaction value or zero for no interaction, and the goal is to rank the items for every user. This study presents a simple new algorithm for implicit data that matches or outperforms baselines in accuracy. The algorithm can be motivated intuitively by the Multivariate Normal Distribution (MVN), where have a closed form expression for the ranking of non-interactions given user's interactions. The main difference to kNN and SVD baselines is that predictions are carried out using only the known interactions. Modified baselines with this trick have a better accuracy, however it also results in simpler models with fewer hyperparameters for implicit data. Our results suggest that this idea should used in Top-N recommendation with small seed sizes and the MVN is a simple way to do so.


  Access Paper or Ask Questions

PARIS: Personalized Activity Recommendation for Improving Sleep Quality

Oct 26, 2021
Meghna Singh, Saksham Goel, Abhiraj Mohan, Louis Kazaglis, Jaideep Srivastava

The quality of sleep has a deep impact on people's physical and mental health. People with insufficient sleep are more likely to report physical and mental distress, activity limitation, anxiety, and pain. Moreover, in the past few years, there has been an explosion of applications and devices for activity monitoring and health tracking. Signals collected from these wearable devices can be used to study and improve sleep quality. In this paper, we utilize the relationship between physical activity and sleep quality to find ways of assisting people improve their sleep using machine learning techniques. People usually have several behavior modes that their bio-functions can be divided into. Performing time series clustering on activity data, we find cluster centers that would correlate to the most evident behavior modes for a specific subject. Activity recipes are then generated for good sleep quality for each behavior mode within each cluster. These activity recipes are supplied to an activity recommendation engine for suggesting a mix of relaxed to intense activities to subjects during their daily routines. The recommendations are further personalized based on the subjects' lifestyle constraints, i.e. their age, gender, body mass index (BMI), resting heart rate, etc, with the objective of the recommendation being the improvement of that night's quality of sleep. This would in turn serve a longer-term health objective, like lowering heart rate, improving the overall quality of sleep, etc.

* 18 pages, 7 figures, Submitted to UMUAI: Special Issue on Recommender Systems for Health and Wellbeing, 2020 

  Access Paper or Ask Questions

Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System

Jan 29, 2019
Muhammad Ammad-ud-din, Elena Ivannikova, Suleiman A. Khan, Were Oyomno, Qiang Fu, Kuan Eeik Tan, Adrian Flanagan

The increasing interest in user privacy is leading to new privacy preserving machine learning paradigms. In the Federated Learning paradigm, a master machine learning model is distributed to user clients, the clients use their locally stored data and model for both inference and calculating model updates. The model updates are sent back and aggregated on the server to update the master model then redistributed to the clients. In this paradigm, the user data never leaves the client, greatly enhancing the user' privacy, in contrast to the traditional paradigm of collecting, storing and processing user data on a backend server beyond the user's control. In this paper we introduce, as far as we are aware, the first federated implementation of a Collaborative Filter. The federated updates to the model are based on a stochastic gradient approach. As a classical case study in machine learning, we explore a personalized recommendation system based on users' implicit feedback and demonstrate the method's applicability to both the MovieLens and an in-house dataset. Empirical validation confirms a collaborative filter can be federated without a loss of accuracy compared to a standard implementation, hence enhancing the user's privacy in a widely used recommender application while maintaining recommender performance.

* 12 pages, 2 figures, 2 tables, submitted to a conference 

  Access Paper or Ask Questions

Neural Input Search for Large Scale Recommendation Models

Jul 10, 2019
Manas R. Joglekar, Cong Li, Jay K. Adams, Pranav Khaitan, Quoc V. Le

Recommendation problems with large numbers of discrete items, such as products, webpages, or videos, are ubiquitous in the technology industry. Deep neural networks are being increasingly used for these recommendation problems. These models use embeddings to represent discrete items as continuous vectors, and the vocabulary sizes and embedding dimensions, although heavily influence the model's accuracy, are often manually selected in a heuristical manner. We present Neural Input Search (NIS), a technique for learning the optimal vocabulary sizes and embedding dimensions for categorical features. The goal is to maximize prediction accuracy subject to a constraint on the total memory used by all embeddings. Moreover, we argue that the traditional Single-size Embedding (SE), which uses the same embedding dimension for all values of a feature, suffers from inefficient usage of model capacity and training data. We propose a novel type of embedding, namely Multi-size Embedding (ME), which allows the embedding dimension to vary for different values of the feature. During training we use reinforcement learning to find the optimal vocabulary size for each feature and embedding dimension for each value of the feature. In experiments on two common types of large scale recommendation problems, i.e. retrieval and ranking problems, NIS automatically found better vocabulary and embedding sizes that result in $6.8\%$ and $1.8\%$ relative improvements on [email protected] and ROC-AUC over manually optimized ones.


  Access Paper or Ask Questions

Does Recommend-Revise Produce Reliable Annotations? An Analysis on Missing Instances in DocRED

Apr 17, 2022
Quzhe Huang, Shibo Hao, Yuan Ye, Shengqi Zhu, Yansong Feng, Dongyan Zhao

DocRED is a widely used dataset for document-level relation extraction. In the large-scale annotation, a \textit{recommend-revise} scheme is adopted to reduce the workload. Within this scheme, annotators are provided with candidate relation instances from distant supervision, and they then manually supplement and remove relational facts based on the recommendations. However, when comparing DocRED with a subset relabeled from scratch, we find that this scheme results in a considerable amount of false negative samples and an obvious bias towards popular entities and relations. Furthermore, we observe that the models trained on DocRED have low recall on our relabeled dataset and inherit the same bias in the training data. Through the analysis of annotators' behaviors, we figure out the underlying reason for the problems above: the scheme actually discourages annotators from supplementing adequate instances in the revision phase. We appeal to future research to take into consideration the issues with the recommend-revise scheme when designing new models and annotation schemes. The relabeled dataset is released at \url{https://github.com/AndrewZhe/Revisit-DocRED}, to serve as a more reliable test set of document RE models.

* ACL 2022 Main Conference 

  Access Paper or Ask Questions

<<
132
133
134
135
136
137
138
139
140
141
142
143
144
>>