Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Long Short-Term Temporal Meta-learning in Online Recommendation

May 08, 2021
Ruobing Xie, Yalong Wang, Rui Wang, Yuanfu Lu, Yuanhang Zou, Feng Xia, Leyu Lin

An effective online recommendation system should jointly capture user long-term and short-term preferences in both user internal and external behaviors. However, it is challenging to conduct fast adaptations to variable new topics while making full use of all information in large-scale systems, due to the online efficiency limitation and complexity of real-world systems. To address this, we propose a novel Long Short-Term Temporal Meta-learning framework (LSTTM) for online recommendation, which captures user preferences from a global long-term graph and an internal short-term graph. To improve online learning for short-term interests, we propose a temporal MAML method with asynchronous online updating for fast adaptation, which regards recommendations at different time periods as different tasks. In experiments, LSTTM achieves significant improvements on both offline and online evaluations. LSTTM has also been deployed on a widely-used online system, affecting millions of users. The idea of temporal MAML can be easily transferred to other models and temporal tasks.

* 8 pages 

  Access Paper or Ask Questions

A NoSQL Data-based Personalized Recommendation System for C2C e-Commerce

Jun 26, 2018
Khanh Dang, Khuong Vo, Josef Küng

With the considerable development of customer-to-customer (C2C) e-commerce in the recent years, there is a big demand for an effective recommendation system that suggests suitable websites for users to sell their items with some specified needs. Nonetheless, e-commerce recommendation systems are mostly designed for business-to-customer (B2C) websites, where the systems offer the consumers the products that they might like to buy. Almost none of the related research works focus on choosing selling sites for target items. In this paper, we introduce an approach that recommends the selling websites based upon the item's description, category, and desired selling price. This approach employs NoSQL data-based machine learning techniques for building and training topic models and classification models. The trained models can then be used to rank the websites dynamically with respect to the user needs. The experimental results with real-world datasets from Vietnam C2C websites will demonstrate the effectiveness of our proposed method.

* Accepted to DEXA 2017 

  Access Paper or Ask Questions

UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation

Oct 28, 2021
Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He

With the recent success of graph convolutional networks (GCNs), they have been widely applied for recommendation, and achieved impressive performance gains. The core of GCNs lies in its message passing mechanism to aggregate neighborhood information. However, we observed that message passing largely slows down the convergence of GCNs during training, especially for large-scale recommender systems, which hinders their wide adoption. LightGCN makes an early attempt to simplify GCNs for collaborative filtering by omitting feature transformations and nonlinear activations. In this paper, we take one step further to propose an ultra-simplified formulation of GCNs (dubbed UltraGCN), which skips infinite layers of message passing for efficient recommendation. Instead of explicit message passing, UltraGCN resorts to directly approximate the limit of infinite-layer graph convolutions via a constraint loss. Meanwhile, UltraGCN allows for more appropriate edge weight assignments and flexible adjustment of the relative importances among different types of relationships. This finally yields a simple yet effective UltraGCN model, which is easy to implement and efficient to train. Experimental results on four benchmark datasets show that UltraGCN not only outperforms the state-of-the-art GCN models but also achieves more than 10x speedup over LightGCN.

* Paper accepted in CIKM'2021. Code available at: 

  Access Paper or Ask Questions

Deep Bayesian Bandits: Exploring in Online Personalized Recommendations

Aug 03, 2020
Dalin Guo, Sofia Ira Ktena, Ferenc Huszar, Pranay Kumar Myana, Wenzhe Shi, Alykhan Tejani

Recommender systems trained in a continuous learning fashion are plagued by the feedback loop problem, also known as algorithmic bias. This causes a newly trained model to act greedily and favor items that have already been engaged by users. This behavior is particularly harmful in personalised ads recommendations, as it can also cause new campaigns to remain unexplored. Exploration aims to address this limitation by providing new information about the environment, which encompasses user preference, and can lead to higher long-term reward. In this work, we formulate a display advertising recommender as a contextual bandit and implement exploration techniques that require sampling from the posterior distribution of click-through-rates in a computationally tractable manner. Traditional large-scale deep learning models do not provide uncertainty estimates by default. We approximate these uncertainty measurements of the predictions by employing a bootstrapped model with multiple heads and dropout units. We benchmark a number of different models in an offline simulation environment using a publicly available dataset of user-ads engagements. We test our proposed deep Bayesian bandits algorithm in the offline simulation and online AB setting with large-scale production traffic, where we demonstrate a positive gain of our exploration model.

  Access Paper or Ask Questions

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

Apr 14, 2019
Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, Peng Jiang

Modeling users' dynamic and evolving preferences from their historical behaviors is challenging and crucial for recommendation systems. Previous methods employ sequential neural networks (e.g., Recurrent Neural Network) to encode users' historical interactions from left to right into hidden representations for making recommendations. Although these methods achieve satisfactory results, they often assume a rigidly ordered sequence which is not always practical. We argue that such left-to-right unidirectional architectures restrict the power of the historical sequence representations. For this purpose, we introduce a Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec). However, jointly conditioning on both left and right context in deep bidirectional model would make the training become trivial since each item can indirectly ``see the target item''. To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context. Comparing with predicting the next item at each position in a sequence, the Cloze task can produce more samples to train a more powerful bidirectional model. Extensive experiments on four benchmark datasets show that our model outperforms various state-of-the-art sequential models consistently.

  Access Paper or Ask Questions

Memory Augmented Neural Model for Incremental Session-based Recommendation

Apr 28, 2020
Fei Mi, Boi Faltings

Increasing concerns with privacy have stimulated interests in Session-based Recommendation (SR) using no personal data other than what is observed in the current browser session. Existing methods are evaluated in static settings which rarely occur in real-world applications. To better address the dynamic nature of SR tasks, we study an incremental SR scenario, where new items and preferences appear continuously. We show that existing neural recommenders can be used in incremental SR scenarios with small incremental updates to alleviate computation overhead and catastrophic forgetting. More importantly, we propose a general framework called Memory Augmented Neural model (MAN). MAN augments a base neural recommender with a continuously queried and updated nonparametric memory, and the predictions from the neural and the memory components are combined through another lightweight gating network. We empirically show that MAN is well-suited for the incremental SR task, and it consistently outperforms state-of-the-art neural and nonparametric methods. We analyze the results and demonstrate that it is particularly good at incrementally learning preferences on new and infrequent items.

* Accepted as a full paper at IJCAI 2020 

  Access Paper or Ask Questions

Conditional Attention Networks for Distilling Knowledge Graphs in Recommendation

Nov 03, 2021
Ke Tu, Peng Cui, Daixin Wang, Zhiqiang Zhang, Jun Zhou, Yuan Qi, Wenwu Zhu

Knowledge graph is generally incorporated into recommender systems to improve overall performance. Due to the generalization and scale of the knowledge graph, most knowledge relationships are not helpful for a target user-item prediction. To exploit the knowledge graph to capture target-specific knowledge relationships in recommender systems, we need to distill the knowledge graph to reserve the useful information and refine the knowledge to capture the users' preferences. To address the issues, we propose Knowledge-aware Conditional Attention Networks (KCAN), which is an end-to-end model to incorporate knowledge graph into a recommender system. Specifically, we use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph. Then given a target, i.e., a user-item pair, we automatically distill the knowledge graph into the target-specific subgraph based on the knowledge-aware attention. Afterward, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations. Therefore, we can gain both representability and personalization to achieve overall performance. Experimental results on real-world datasets demonstrate the effectiveness of our framework over the state-of-the-art algorithms.

* Accepted by CIKM21 

  Access Paper or Ask Questions

FedRecAttack: Model Poisoning Attack to Federated Recommendation

Apr 01, 2022
Dazhong Rong, Shuai Ye, Ruoyan Zhao, Hon Ning Yuen, Jianhai Chen, Qinming He

Federated Recommendation (FR) has received considerable popularity and attention in the past few years. In FR, for each user, its feature vector and interaction data are kept locally on its own client thus are private to others. Without the access to above information, most existing poisoning attacks against recommender systems or federated learning lose validity. Benifiting from this characteristic, FR is commonly considered fairly secured. However, we argue that there is still possible and necessary security improvement could be made in FR. To prove our opinion, in this paper we present FedRecAttack, a model poisoning attack to FR aiming to raise the exposure ratio of target items. In most recommendation scenarios, apart from private user-item interactions (e.g., clicks, watches and purchases), some interactions are public (e.g., likes, follows and comments). Motivated by this point, in FedRecAttack we make use of the public interactions to approximate users' feature vectors, thereby attacker can generate poisoned gradients accordingly and control malicious users to upload the poisoned gradients in a well-designed way. To evaluate the effectiveness and side effects of FedRecAttack, we conduct extensive experiments on three real-world datasets of different sizes from two completely different scenarios. Experimental results demonstrate that our proposed FedRecAttack achieves the state-of-the-art effectiveness while its side effects are negligible. Moreover, even with small proportion (3%) of malicious users and small proportion (1%) of public interactions, FedRecAttack remains highly effective, which reveals that FR is more vulnerable to attack than people commonly considered.

* This paper has been accepted by IEEE International Conference on Data Engineering 2022 (Second Research Round) 

  Access Paper or Ask Questions

Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation

Jan 13, 2021
Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, Mark Coates

Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them. Although matrix factorization and deep learning based methods have proved effective in user preference modeling, they violate the triangle inequality and fail to capture fine-grained preference information. To tackle this, we develop a distance-based recommendation model with several novel aspects: (i) each user and item are parameterized by Gaussian distributions to capture the learning uncertainties; (ii) an adaptive margin generation scheme is proposed to generate the margins regarding different training triplets; (iii) explicit user-user/item-item similarity modeling is incorporated in the objective function. The Wasserstein distance is employed to determine preferences because it obeys the triangle inequality and can measure the distance between probabilistic distributions. Via a comparison using five real-world datasets with state-of-the-art methods, the proposed model outperforms the best existing models by 4-22% in terms of [email protected] on Top-K recommendation.

* Accepted by the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020 Research Track) 

  Access Paper or Ask Questions

Explainable Recommender Systems via Resolving Learning Representations

Aug 21, 2020
Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, Soo-Hyun Choi

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

  Access Paper or Ask Questions