Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Towards the D-Optimal Online Experiment Design for Recommender Selection

Oct 23, 2021
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan

Selecting the optimal recommender via online exploration-exploitation is catching increasing attention where the traditional A/B testing can be slow and costly, and offline evaluations are prone to the bias of history data. Finding the optimal online experiment is nontrivial since both the users and displayed recommendations carry contextual features that are informative to the reward. While the problem can be formalized via the lens of multi-armed bandits, the existing solutions are found less satisfactorily because the general methodologies do not account for the case-specific structures, particularly for the e-commerce recommendation we study. To fill in the gap, we leverage the \emph{D-optimal design} from the classical statistics literature to achieve the maximum information gain during exploration, and reveal how it fits seamlessly with the modern infrastructure of online inference. To demonstrate the effectiveness of the optimal designs, we provide semi-synthetic simulation studies with published code and data for reproducibility purposes. We then use our deployment example on Walmart.com to fully illustrate the practical insights and effectiveness of the proposed methods.


  Access Paper or Ask Questions

Context-aware Retail Product Recommendation with Regularized Gradient Boosting

Sep 17, 2021
Sourya Dipta Das, Ayan Basak

In the FARFETCH Fashion Recommendation challenge, the participants needed to predict the order in which various products would be shown to a user in a recommendation impression. The data was provided in two phases - a validation phase and a test phase. The validation phase had a labelled training set that contained a binary column indicating whether a product has been clicked or not. The dataset comprises over 5,000,000 recommendation events, 450,000 products and 230,000 unique users. It represents real, unbiased, but anonymised, interactions of actual users of the FARFETCH platform. The final evaluation was done according to the performance in the second phase. A total of 167 participants participated in the challenge, and we secured the 6th rank during the final evaluation with an MRR of 0.4658 on the test set. We have designed a unique context-aware system that takes the similarity of a product to the user context into account to rank products more effectively. Post evaluation, we have been able to fine-tune our approach with an MRR of 0.4784 on the test set, which would have placed us at the 3rd position.

* Accepted to the FARFETCH Fashion Recommendations Challenge Workshop, ECML-PKDD 2021 

  Access Paper or Ask Questions

ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations

Aug 05, 2019
Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, Eric P. Xing

We describe ChemBO, a Bayesian Optimization framework for generating and optimizing organic molecules for desired molecular properties. This framework is useful in applications such as drug discovery, where an algorithm recommends new candidate molecules; these molecules first need to be synthesized and then tested for drug-like properties. The algorithm uses the results of past tests to recommend new ones so as to find good molecules efficiently. Most existing data-driven methods for this problem do not account for sample efficiency and/or fail to enforce realistic constraints on synthesizability. In this work, we explore existing kernels for molecules in the literature as well as propose a novel kernel which views a molecule as a graph. In ChemBO, we implement these kernels in a Gaussian process model. Then we explore the chemical space by traversing possible paths of molecular synthesis. Consequently, our approach provides a proposal synthesis path every time it recommends a new molecule to test, a crucial advantage when compared to existing methods. In our experiments, we demonstrate the efficacy of the proposed approach on several molecular optimization problems.


  Access Paper or Ask Questions

Bayesian Prior Learning via Neural Networks for Next-item Recommendation

May 10, 2022
Manoj Reddy Dareddy, Zijun Xue, Nicholas Lin, Junghoo Cho

Next-item prediction is a a popular problem in the recommender systems domain. As the name suggests, the task is to recommend subsequent items that a user would be interested in given contextual information and historical interaction data. In our paper, we model a general notion of context via a sequence of item interactions. We model the next item prediction problem using the Bayesian framework and capture the probability of appearance of a sequence through the posterior mean of the Beta distribution. We train two neural networks to accurately predict the alpha & beta parameter values of the Beta distribution. Our novel approach of combining black-box style neural networks, known to be suitable for function approximation with Bayesian estimation methods have resulted in an innovative method that outperforms various state-of-the-art baselines. We demonstrate the effectiveness of our method in two real world datasets. Our framework is an important step towards the goal of building privacy preserving recommender systems.


  Access Paper or Ask Questions

Multi-Scale Quasi-RNN for Next Item Recommendation

Feb 26, 2019
Chaoyue He, Yong Liu, Qingyu Guo, Chunyan Miao

How to better utilize sequential information has been extensively studied in the setting of recommender systems. To this end, architectural inductive biases such as Markov-Chains, Recurrent models, Convolutional networks and many others have demonstrated reasonable success on this task. This paper proposes a new neural architecture, multi-scale Quasi-RNN for next item Recommendation (QR-Rec) task. Our model provides the best of both worlds by exploiting multi-scale convolutional features as the compositional gating functions of a recurrent cell. The model is implemented in a multi-scale fashion, i.e., convolutional filters of various widths are implemented to capture different union-level features of input sequences which influence the compositional encoder. The key idea aims to capture the recurrent relations between different kinds of local features, which has never been studied previously in the context of recommendation. Through extensive experiments, we demonstrate that our model achieves state-of-the-art performance on 15 well-established datasets, outperforming strong competitors such as FPMC, Fossil and Caser absolutely by 0.57%-7.16% and relatively by 1.44%-17.65% in terms of MAP, [email protected] and [email protected]

* 7 pages, 2 figures, 6 tables 

  Access Paper or Ask Questions

FUM: Fine-grained and Fast User Modeling for News Recommendation

Apr 10, 2022
Tao Qi, Fangzhao Wu, Chuhan Wu, Yongfeng Huang

User modeling is important for news recommendation. Existing methods usually first encode user's clicked news into news embeddings independently and then aggregate them into user embedding. However, the word-level interactions across different clicked news from the same user, which contain rich detailed clues to infer user interest, are ignored by these methods. In this paper, we propose a fine-grained and fast user modeling framework (FUM) to model user interest from fine-grained behavior interactions for news recommendation. The core idea of FUM is to concatenate the clicked news into a long document and transform user modeling into a document modeling task with both intra-news and inter-news word-level interactions. Since vanilla transformer cannot efficiently handle long document, we apply an efficient transformer named Fastformer to model fine-grained behavior interactions. Extensive experiments on two real-world datasets verify that FUM can effectively and efficiently model user interest for news recommendation.

* SIGIR 2022 

  Access Paper or Ask Questions

Multi-Pointer Co-Attention Networks for Recommendation

Jun 21, 2018
Yi Tay, Luu Anh Tuan, Siu Cheung Hui

Many recent state-of-the-art recommender systems such as D-ATT, TransNet and DeepCoNN exploit reviews for representation learning. This paper proposes a new neural architecture for recommendation with reviews. Our model operates on a multi-hierarchical paradigm and is based on the intuition that not all reviews are created equal, i.e., only a select few are important. The importance, however, should be dynamically inferred depending on the current target. To this end, we propose a review-by-review pointer-based learning scheme that extracts important reviews, subsequently matching them in a word-by-word fashion. This enables not only the most informative reviews to be utilized for prediction but also a deeper word-level interaction. Our pointer-based method operates with a novel gumbel-softmax based pointer mechanism that enables the incorporation of discrete vectors within differentiable neural architectures. Our pointer mechanism is co-attentive in nature, learning pointers which are co-dependent on user-item relationships. Finally, we propose a multi-pointer learning scheme that learns to combine multiple views of interactions between user and item. Overall, we demonstrate the effectiveness of our proposed model via extensive experiments on \textbf{24} benchmark datasets from Amazon and Yelp. Empirical results show that our approach significantly outperforms existing state-of-the-art, with up to 19% and 71% relative improvement when compared to TransNet and DeepCoNN respectively. We study the behavior of our multi-pointer learning mechanism, shedding light on evidence aggregation patterns in review-based recommender systems.

* Accepted to KDD 2018 (Research Track) 

  Access Paper or Ask Questions

Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks

Nov 02, 2016
Hao Wang, Xingjian Shi, Dit-Yan Yeung

Hybrid methods that utilize both content and rating information are commonly used in many recommender systems. However, most of them use either handcrafted features or the bag-of-words representation as a surrogate for the content information but they are neither effective nor natural enough. To address this problem, we develop a collaborative recurrent autoencoder (CRAE) which is a denoising recurrent autoencoder (DRAE) that models the generation of content sequences in the collaborative filtering (CF) setting. The model generalizes recent advances in recurrent deep learning from i.i.d. input to non-i.i.d. (CF-based) input and provides a new denoising scheme along with a novel learnable pooling scheme for the recurrent autoencoder. To do this, we first develop a hierarchical Bayesian model for the DRAE and then generalize it to the CF setting. The synergy between denoising and CF enables CRAE to make accurate recommendations while learning to fill in the blanks in sequences. Experiments on real-world datasets from different domains (CiteULike and Netflix) show that, by jointly modeling the order-aware generation of sequences for the content information and performing CF for the ratings, CRAE is able to significantly outperform the state of the art on both the recommendation task based on ratings and the sequence generation task based on content information.

* To appear at NIPS 2016 

  Access Paper or Ask Questions

Toward the Next Generation of News Recommender Systems

Mar 11, 2021
Himan Abdollahpouri, Edward Malthouse, Joseph Konstan, Bamshad Mobasher, Jeremy Gilbert

This paper proposes a vision and research agenda for the next generation of news recommender systems (RS), called the table d'hote approach. A table d'hote (translates as host's table) meal is a sequence of courses that create a balanced and enjoyable dining experience for a guest. Likewise, we believe news RS should strive to create a similar experience for the users by satisfying the news-diet needs of a user. While extant news RS considers criteria such as diversity and serendipity, and RS bundles have been studied for other contexts such as tourism, table d'hote goes further by ensuring the recommended articles satisfy a diverse set of user needs in the right proportions and in a specific order. In table d'hote, available articles need to be stratified based on the different ways that news can create value for the reader, building from theories and empirical research in journalism and user engagement. Using theories and empirical research from communication on the uses and gratifications (U&G) consumers derive from media, we define two main strata in a table d'hote news RS, each with its own substrata: 1) surveillance, which consists of information the user needs to know, and 2) serendipity, which are the articles offering unexpected surprises. The diversity of the articles according to the defined strata and the order of the articles within the list of recommendations are also two important aspects of the table d'hote in order to give the users the most effective reading experience. We propose our vision, link it to the existing concepts in the RS literature, and identify challenges for future research.

* WWW '21 Companion, April 19-23, 2021, Ljubljana, Slovenia 

  Access Paper or Ask Questions

Block based Singular Value Decomposition approach to matrix factorization for recommender systems

Jul 17, 2019
Prasad Bhavana, Vikas Kumar, Vineet Padmanabhan

With the abundance of data in recent years, interesting challenges are posed in the area of recommender systems. Producing high quality recommendations with scalability and performance is the need of the hour. Singular Value Decomposition(SVD) based recommendation algorithms have been leveraged to produce better results. In this paper, we extend the SVD technique further for scalability and performance in the context of 1) multi-threading 2) multiple computational units (with the use of Graphical Processing Units) and 3) distributed computation. We propose block based matrix factorization (BMF) paired with SVD. This enabled us to take advantage of SVD over basic matrix factorization(MF) while taking advantage of parallelism and scalability through BMF. We used Compute Unified Device Architecture (CUDA) platform and related hardware for leveraging Graphical Processing Unit (GPU) along with block based SVD to demonstrate the advantages in terms of performance and memory.


  Access Paper or Ask Questions

<<
127
128
129
130
131
132
133
134
135
136
137
138
139
>>