Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Contrastive Learning for Cold-Start Recommendation

Jul 12, 2021
Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, Tat-Seng Chua

Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.

* Accepted by ACM Multimedia 2021 

  Access Paper or Ask Questions

Transformers with multi-modal features and post-fusion context for e-commerce session-based recommendation

Jul 11, 2021
Gabriel de Souza P. Moreira, Sara Rabhi, Ronay Ak, Md Yasin Kabir, Even Oldridge

Session-based recommendation is an important task for e-commerce services, where a large number of users browse anonymously or may have very distinct interests for different sessions. In this paper we present one of the winning solutions for the Recommendation task of the SIGIR 2021 Workshop on E-commerce Data Challenge. Our solution was inspired by NLP techniques and consists of an ensemble of two Transformer architectures - Transformer-XL and XLNet - trained with autoregressive and autoencoding approaches. To leverage most of the rich dataset made available for the competition, we describe how we prepared multi-model features by combining tabular events with textual and image vectors. We also present a model prediction analysis to better understand the effectiveness of our architectures for the session-based recommendation.

* In Proceedings of SIGIR eCom'21 - SIGIR eCommerce Workshop Data Challenge 2021. https://sigir-ecom.github.io/ 

  Access Paper or Ask Questions

Hierarchical Context enabled Recurrent Neural Network for Recommendation

Apr 26, 2019
Kyungwoo Song, Mingi Ji, Sungrae Park, Il-Chul Moon

A long user history inevitably reflects the transitions of personal interests over time. The analyses on the user history require the robust sequential model to anticipate the transitions and the decays of user interests. The user history is often modeled by various RNN structures, but the RNN structures in the recommendation system still suffer from the long-term dependency and the interest drifts. To resolve these challenges, we suggest HCRNN with three hierarchical contexts of the global, the local, and the temporary interests. This structure is designed to withhold the global long-term interest of users, to reflect the local sub-sequence interests, and to attend the temporary interests of each transition. Besides, we propose a hierarchical context-based gate structure to incorporate our \textit{interest drift assumption}. As we suggest a new RNN structure, we support HCRNN with a complementary \textit{bi-channel attention} structure to utilize hierarchical context. We experimented the suggested structure on the sequential recommendation tasks with CiteULike, MovieLens, and LastFM, and our model showed the best performances in the sequential recommendations.

* AAAI 2019 

  Access Paper or Ask Questions

Sparse-Interest Network for Sequential Recommendation

Feb 18, 2021
Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia Yang, Xia Hu

Recent methods in sequential recommendation focus on learning an overall embedding vector from a user's behavior sequence for the next-item recommendation. However, from empirical analysis, we discovered that a user's behavior sequence often contains multiple conceptually distinct items, while a unified embedding vector is primarily affected by one's most recent frequent actions. Thus, it may fail to infer the next preferred item if conceptually similar items are not dominant in recent interactions. To this end, an alternative solution is to represent each user with multiple embedding vectors encoding different aspects of the user's intentions. Nevertheless, recent work on multi-interest embedding usually considers a small number of concepts discovered via clustering, which may not be comparable to the large pool of item categories in real systems. It is a non-trivial task to effectively model a large number of diverse conceptual prototypes, as items are often not conceptually well clustered in fine granularity. Besides, an individual usually interacts with only a sparse set of concepts. In light of this, we propose a novel \textbf{S}parse \textbf{I}nterest \textbf{NE}twork (SINE) for sequential recommendation. Our sparse-interest module can adaptively infer a sparse set of concepts for each user from the large concept pool and output multiple embeddings accordingly. Given multiple interest embeddings, we develop an interest aggregation module to actively predict the user's current intention and then use it to explicitly model multiple interests for next-item prediction. Empirical results on several public benchmark datasets and one large-scale industrial dataset demonstrate that SINE can achieve substantial improvement over state-of-the-art methods.


  Access Paper or Ask Questions

Deep Learning-based Sequential Recommender Systems: Concepts, Algorithms, and Evaluations

Apr 30, 2019
Hui Fang, Danning Zhang, Yiheng Shu, Guibing Guo

In the field of sequential recommendation, deep learning methods have received a lot of attention in the past few years and surpassed traditional models such as Markov chain-based and factorization-based ones. However, DL-based methods also have some critical drawbacks, such as insufficient modeling of user representation and ignoring to distinguish the different types of interactions (i.e., user behavior) among users and items. In this view, this survey focuses on DL-based sequential recommender systems by taking the aforementioned issues into consideration. Specifically, we illustrate the concept of sequential recommendation, propose a categorization of existing algorithms in terms of three types of behavioral sequence, summarize the key factors affecting the performance of DL-based models, and conduct corresponding evaluations to demonstrate the effects of these factors. We conclude this survey by systematically outlining future directions and challenges in this field.

* 20 pages, 17 figures, 5 tables, 97 references 

  Access Paper or Ask Questions

Cross-domain Recommendation via Deep Domain Adaptation

Mar 08, 2018
Heishiro Kanagawa, Hayato Kobayashi, Nobuyuki Shimizu, Yukihiro Tagami, Taiji Suzuki

The behavior of users in certain services could be a clue that can be used to infer their preferences and may be used to make recommendations for other services they have never used. However, the cross-domain relationships between items and user consumption patterns are not simple, especially when there are few or no common users and items across domains. To address this problem, we propose a content-based cross-domain recommendation method for cold-start users that does not require user- and item- overlap. We formulate recommendation as extreme multi-class classification where labels (items) corresponding to the users are predicted. With this formulation, the problem is reduced to a domain adaptation setting, in which a classifier trained in the source domain is adapted to the target domain. For this, we construct a neural network that combines an architecture for domain adaptation, Domain Separation Network, with a denoising autoencoder for item representation. We assess the performance of our approach in experiments on a pair of data sets collected from movie and news services of Yahoo! JAPAN and show that our approach outperforms several baseline methods including a cross-domain collaborative filtering method.


  Access Paper or Ask Questions

A Knowledge-Enhanced Recommendation Model with Attribute-Level Co-Attention

Jun 18, 2020
Deqing Yang, Zengcun Song, Lvxin Xue, Yanghua Xiao

Deep neural networks (DNNs) have been widely employed in recommender systems including incorporating attention mechanism for performance improvement. However, most of existing attention-based models only apply item-level attention on user side, restricting the further enhancement of recommendation performance. In this paper, we propose a knowledge-enhanced recommendation model ACAM, which incorporates item attributes distilled from knowledge graphs (KGs) as side information, and is built with a co-attention mechanism on attribute-level to achieve performance gains. Specifically, each user and item in ACAM are represented by a set of attribute embeddings at first. Then, user representations and item representations are augmented simultaneously through capturing the correlations between different attributes by a co-attention module. Our extensive experiments over two realistic datasets show that the user representations and item representations augmented by attribute-level co-attention gain ACAM's superiority over the state-of-the-art deep models.

* SIGIR 2020 

  Access Paper or Ask Questions

Sequential Recommendation with Bidirectional Chronological Augmentation of Transformer

Dec 13, 2021
Juyong Jiang, Yingtao Luo, Jae Boum Kim, Kai Zhang, Sunghun Kim

Sequential recommendation can capture user chronological preferences from their historical behaviors, yet the learning of short sequences is still an open challenge. Recently, data augmentation with pseudo-prior items generated by transformers has drawn considerable attention in improving recommendation in short sequences and addressing the cold-start problem. These methods typically generate pseudo-prior items sequentially in reverse chronological order (i.e., from the future to the past) to obtain longer sequences for subsequent learning. However, the performance can still degrade for very short sequences than for longer ones. In fact, reverse sequential augmentation does not explicitly take into account the forward direction, and so the underlying temporal correlations may not be fully preserved in terms of conditional probabilities. In this paper, we propose a Bidirectional Chronological Augmentation of Transformer (BiCAT) that uses a forward learning constraint in the reverse generative process to capture contextual information more effectively. The forward constraint serves as a bridge between reverse data augmentation and forward recommendation. It can also be used as pretraining to facilitate subsequent learning. Extensive experiments on two public datasets with detailed comparisons to multiple baseline models demonstrate the effectiveness of our method, especially for very short sequences (3 or fewer items).


  Access Paper or Ask Questions

Rethinking Adjacent Dependency in Session-based Recommendations

Jan 29, 2022
Qian Zhang, Shoujin Wang, Wenpeng Lu, Chong Feng, Xueping Peng, Qingxiang Wang

Session-based recommendations (SBRs) recommend the next item for an anonymous user by modeling the dependencies between items in a session. Benefiting from the superiority of graph neural networks (GNN) in learning complex dependencies, GNN-based SBRs have become the main stream of SBRs in recent years. Most GNN-based SBRs are based on a strong assumption of adjacent dependency, which means any two adjacent items in a session are necessarily dependent here. However, based on our observation, the adjacency does not necessarily indicate dependency due to the uncertainty and complexity of user behaviours. Therefore, the aforementioned assumption does not always hold in the real-world cases and thus easily leads to two deficiencies: (1) the introduction of false dependencies between items which are adjacent in a session but are not really dependent, and (2) the missing of true dependencies between items which are not adjacent but are actually dependent. Such deficiencies significantly downgrade accurate dependency learning and thus reduce the recommendation performance. Aiming to address these deficiencies, we propose a novel review-refined inter-item graph neural network (RI-GNN), which utilizes the topic information extracted from items' reviews to refine dependencies between items. Experiments on two public real-world datasets demonstrate that RI-GNN outperforms the state-of-the-art methods.

* 12 pages, 4 figures, conference 

  Access Paper or Ask Questions

Dual Adversarial Variational Embedding for Robust Recommendation

Jun 30, 2021
Qiaomin Yi, Ning Yang, Philip S. Yu

Robust recommendation aims at capturing true preference of users from noisy data, for which there are two lines of methods have been proposed. One is based on noise injection, and the other is to adopt the generative model Variational Auto-encoder (VAE). However, the existing works still face two challenges. First, the noise injection based methods often draw the noise from a fixed noise distribution given in advance, while in real world, the noise distributions of different users and items may differ from each other due to personal behaviors and item usage patterns. Second, the VAE based models are not expressive enough to capture the true preference since VAE often yields an embedding space of a single modal, while in real world, user-item interactions usually exhibit multi-modality on user preference distribution. In this paper, we propose a novel model called Dual Adversarial Variational Embedding (DAVE) for robust recommendation, which can provide personalized noise reduction for different users and items, and capture the multi-modality of the embedding space, by combining the advantages of VAE and adversarial training between the introduced auxiliary discriminators and the variational inference networks. The extensive experiments conducted on real datasets verify the effectiveness of DAVE on robust recommendation.


  Access Paper or Ask Questions

<<
121
122
123
124
125
126
127
128
129
130
131
132
133
>>