Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Context-aware Reranking with Utility Maximization for Recommendation

Oct 18, 2021
Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, Yong Yu

As a critical task for large-scale commercial recommender systems, reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. Reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users' demands. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the counterfactual context -- the position and the alignment of the items in the reranked lists. In this work, we propose a novel pairwise reranking framework, Context-aware Reranking with Utility Maximization for recommendation (CRUM), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the counterfactual context modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that CRUM significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.

  Access Paper or Ask Questions

Interacting Attention-gated Recurrent Networks for Recommendation

Sep 07, 2017
Wenjie Pei, Jie Yang, Zhu Sun, Jie Zhang, Alessandro Bozzon, David M. J. Tax

Capturing the temporal dynamics of user preferences over items is important for recommendation. Existing methods mainly assume that all time steps in user-item interaction history are equally relevant to recommendation, which however does not apply in real-world scenarios where user-item interactions can often happen accidentally. More importantly, they learn user and item dynamics separately, thus failing to capture their joint effects on user-item interactions. To better model user and item dynamics, we present the Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model to measure the relevance of each time step. In particular, we propose a novel attention scheme to learn the attention scores of user and item history in an interacting way, thus to account for the dependencies between user and item dynamics in shaping user-item interactions. By doing so, IARN can selectively memorize different time steps of a user's history when predicting her preferences over different items. Our model can therefore provide meaningful interpretations for recommendation results, which could be further enhanced by auxiliary features. Extensive validation on real-world datasets shows that IARN consistently outperforms state-of-the-art methods.

* Accepted by ACM International Conference on Information and Knowledge Management (CIKM), 2017 

  Access Paper or Ask Questions

Optimal client recommendation for market makers in illiquid financial products

Apr 27, 2017
Dieter Hendricks, Stephen J. Roberts

The process of liquidity provision in financial markets can result in prolonged exposure to illiquid instruments for market makers. In this case, where a proprietary position is not desired, pro-actively targeting the right client who is likely to be interested can be an effective means to offset this position, rather than relying on commensurate interest arising through natural demand. In this paper, we consider the inference of a client profile for the purpose of corporate bond recommendation, based on typical recorded information available to the market maker. Given a historical record of corporate bond transactions and bond meta-data, we use a topic-modelling analogy to develop a probabilistic technique for compiling a curated list of client recommendations for a particular bond that needs to be traded, ranked by probability of interest. We show that a model based on Latent Dirichlet Allocation offers promising performance to deliver relevant recommendations for sales traders.

* 12 pages, 3 figures, 1 table 

  Access Paper or Ask Questions

Context-aware Ensemble of Multifaceted Factorization Models for Recommendation Prediction in Social Networks

May 03, 2021
Yunwen Chen, Zuotao Liu, Daqi Ji, Yingwei Xin, Wenguang Wang, Lu Yao, Yi Zou

This paper describes the solution of Shanda Innovations team to Task 1 of KDD-Cup 2012. A novel approach called Multifaceted Factorization Models is proposed to incorporate a great variety of features in social networks. Social relationships and actions between users are integrated as implicit feedbacks to improve the recommendation accuracy. Keywords, tags, profiles, time and some other features are also utilized for modeling user interests. In addition, user behaviors are modeled from the durations of recommendation records. A context-aware ensemble framework is then applied to combine multiple predictors and produce final recommendation results. The proposed approach obtained 0.43959 (public score) / 0.41874 (private score) on the testing dataset, which achieved the 2nd place in the KDD-Cup competition.

* KDD 2012 

  Access Paper or Ask Questions

Deep Learning feature selection to unhide demographic recommender systems factors

Jun 17, 2020
Jesús Bobadilla, Ángel González-Prieto, Fernando Ortega, Raúl Lara-Cabrera

Extracting demographic features from hidden factors is an innovative concept that provides multiple and relevant applications. The matrix factorization model generates factors which do not incorporate semantic knowledge. This paper provides a deep learning-based method: DeepUnHide, able to extract demographic information from the users and items factors in collaborative filtering recommender systems. The core of the proposed method is the gradient-based localization used in the image processing literature to highlight the representative areas of each classification class. Validation experiments make use of two public datasets and current baselines. Results show the superiority of DeepUnHide to make feature selection and demographic classification, compared to the state of art of feature selection methods. Relevant and direct applications include recommendations explanation, fairness in collaborative filtering and recommendation to groups of users.

* 20 pages, 14 figures, 1 table 

  Access Paper or Ask Questions

PEN4Rec: Preference Evolution Networks for Session-based Recommendation

Jun 17, 2021
Dou Hu, Lingwei Wei, Wei Zhou, Xiaoyong Huai, Zhiqi Fang, Songlin Hu

Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve over time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.

* 12 pages, accepted by KSEM 2021 

  Access Paper or Ask Questions

CuratorNet: Visually-aware Recommendation of Art Images

Sep 30, 2020
Pablo Messina, Manuel Cartagena, Patricio Cerda-Mardini, Felipe del Rio, Denis Parra

Although there are several visually-aware recommendation models in domains like fashion or even movies, the art domain lacks thesame level of research attention, despite the recent growth of the online artwork market. To reduce this gap, in this article we introduceCuratorNet, a neural network architecture for visually-aware recommendation of art images. CuratorNet is designed at the core withthe goal of maximizing generalization: the network has a fixed set of parameters that only need to be trained once, and thereafter themodel is able to generalize to new users or items never seen before, without further training. This is achieved by leveraging visualcontent: items are mapped to item vectors through visual embeddings, and users are mapped to user vectors by aggregating the visualcontent of items they have consumed. Besides the model architecture, we also introduce novel triplet sampling strategies to build atraining set for rank learning in the art domain, resulting in more effective learning than naive random sampling. With an evaluationover a real-world dataset of physical paintings, we show that CuratorNet achieves the best performance among several baselines,including the state-of-the-art model VBPR. CuratorNet is motivated and evaluated in the art domain, but its architecture and trainingscheme could be adapted to recommend images in other areas

  Access Paper or Ask Questions

Contrastive Learning for Cold-Start Recommendation

Jul 15, 2021
Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, Tat-Seng Chua

Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.

* Accepted by ACM Multimedia 2021 

  Access Paper or Ask Questions