Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Tag Recommendation for Online Q&A Communities based on BERT Pre-Training Technique

Oct 10, 2020
Navid Khezrian, Jafar Habibi, Issa Annamoradnejad

Online Q&A and open source communities use tags and keywords to index, categorize, and search for specific content. The most obvious advantage of tag recommendation is the correct classification of information. In this study, we used the BERT pre-training technique in tag recommendation task for online Q&A and open-source communities for the first time. Our evaluation on freecode datasets show that the proposed method, called TagBERT, is more accurate compared to deep learning and other baseline methods. Moreover, our model achieved a high stability by solving the problem of previous researches, where increasing the number of tag recommendations significantly reduced model performance.

* 5 pages, initial results 

  Access Paper or Ask Questions

Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks

Aug 23, 2017
Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, Paolo Cremonesi

Session-based recommendations are highly relevant in many modern on-line services (e.g. e-commerce, video streaming) and recommendation settings. Recently, Recurrent Neural Networks have been shown to perform very well in session-based settings. While in many session-based recommendation domains user identifiers are hard to come by, there are also domains in which user profiles are readily available. We propose a seamless way to personalize RNN models with cross-session information transfer and devise a Hierarchical RNN model that relays end evolves latent hidden states of the RNNs across user sessions. Results on two industry datasets show large improvements over the session-only RNNs.

  Access Paper or Ask Questions

RikoNet: A Novel Anime Recommendation Engine

Jun 24, 2021
Badal Soni, Debangan Thakuria, Nilutpal Nath, Navarun Das, Bhaskarananda Boro

Anime is quite well-received today, especially among the younger generations. With many genres of available shows, more and more people are increasingly getting attracted to this niche section of the entertainment industry. As anime has recently garnered mainstream attention, we have insufficient information regarding users' penchant and watching habits. Therefore, it is an uphill task to build a recommendation engine for this relatively obscure entertainment medium. In this attempt, we have built a novel hybrid recommendation system that could act both as a recommendation system and as a means of exploring new anime genres and titles. We have analyzed the general trends in this field and the users' watching habits for coming up with our efficacious solution. Our solution employs deep autoencoders for the tasks of predicting ratings and generating embeddings. Following this, we formed clusters using the embeddings of the anime titles. These clusters form the search space for anime with similarities and are used to find anime similar to the ones liked and disliked by the user. This method, combined with the predicted ratings, forms the novel hybrid filter. In this article, we have demonstrated this idea and compared the performance of our implemented model with the existing state-of-the-art techniques.

* 19 pages 

  Access Paper or Ask Questions

Point-of-Interest Recommender Systems: A Survey from an Experimental Perspective

Jun 18, 2021
Pablo Sánchez, Alejandro Bellogín

Point-of-Interest recommendation is an increasing research and developing area within the widely adopted technologies known as Recommender Systems. Among them, those that exploit information coming from Location-Based Social Networks (LBSNs) are very popular nowadays and could work with different information sources, which pose several challenges and research questions to the community as a whole. We present a systematic review focused on the research done in the last 10 years about this topic. We discuss and categorize the algorithms and evaluation methodologies used in these works and point out the opportunities and challenges that remain open in the field. More specifically, we report the leading recommendation techniques and information sources that have been exploited more often (such as the geographical signal and deep learning approaches) while we also alert about the lack of reproducibility in the field that may hinder real performance improvements.

* Submitted in Jul 2020 (revised in Jun 2021, still under review) to ACM Computing Surveys 

  Access Paper or Ask Questions

MM-Rec: Multimodal News Recommendation

Apr 15, 2021
Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang

Accurate news representation is critical for news recommendation. Most of existing news representation methods learn news representations only from news texts while ignore the visual information in news like images. In fact, users may click news not only because of the interest in news titles but also due to the attraction of news images. Thus, images are useful for representing news and predicting user behaviors. In this paper, we propose a multimodal news recommendation method, which can incorporate both textual and visual information of news to learn multimodal news representations. We first extract region-of-interests (ROIs) from news images via objective detection. Then we use a pre-trained visiolinguistic model to encode both news texts and news image ROIs and model their inherent relatedness using co-attentional Transformers. In addition, we propose a crossmodal candidate-aware attention network to select relevant historical clicked news for accurate user modeling by measuring the crossmodal relatedness between clicked news and candidate news. Experiments validate that incorporating multimodal news information can effectively improve news recommendation.

  Access Paper or Ask Questions

Friend Recommendation based on Hashtags Analysis

Mar 07, 2020
Ali Choumane, Zein Al Abidin Ibrahim

Social networks include millions of users constantly looking for new relationships for personal or professional purposes. Social network sites recommend friends based on relationship features and content information. A significant part of information shared every day is spread in Hashtags. None of the existing content-based recommender systems uses the semantic of hashtags while suggesting new friends. Currently, hashtags are considered as strings without looking at their meanings. Social network sites group together people sharing exactly the same hashtags and never semantically close ones. We think that hashtags encapsulate some people interests. In this paper, we propose a framework showing how a recommender system can benefit from hashtags to enrich users' profiles. This framework consists of three main components: (1) constructing user's profile based on shared hashtags, (2) matching method that computes semantic similarity between profiles, (3) grouping semantically close users using clustering technics. The proposed framework has been tested on a Twitter dataset from the Stanford Large Network Dataset Collection consisting of 81306 profiles.

* Journal of Computer Science: Theory and Application, vol. 4, no. 3., p. 63-69 

  Access Paper or Ask Questions

Neural Model-Based Reinforcement Learning for Recommendation

Dec 27, 2018
Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, Le Song

There are great interests as well as many challenges in applying reinforcement learning (RL) to recommendation systems. In this setting, an online user is the environment; neither the reward function nor the environment dynamics are clearly defined, making the application of RL challenging. In this paper, we propose a novel model-based reinforcement learning framework for recommendation systems, where we develop a generative adversarial network to imitate user behavior dynamics and learn her reward function. Using this user model as the simulation environment, we develop a novel DQN algorithm to obtain a combinatorial recommendation policy which can handle a large number of candidate items efficiently. In our experiments with real data, we show this generative adversarial user model can better explain user behavior than alternatives, and the RL policy based on this model can lead to a better long-term reward for the user and higher click rate for the system.

  Access Paper or Ask Questions

Opinion Recommendation using Neural Memory Model

Feb 06, 2017
Zhongqing Wang, Yue Zhang

We present opinion recommendation, a novel task of jointly predicting a custom review with a rating score that a certain user would give to a certain product or service, given existing reviews and rating scores to the product or service by other users, and the reviews that the user has given to other products and services. A characteristic of opinion recommendation is the reliance of multiple data sources for multi-task joint learning, which is the strength of neural models. We use a single neural network to model users and products, capturing their correlation and generating customised product representations using a deep memory network, from which customised ratings and reviews are constructed jointly. Results show that our opinion recommendation system gives ratings that are closer to real user ratings on data compared with Yelp's own ratings, and our methods give better results compared to several pipelines baselines using state-of-the-art sentiment rating and summarization systems.

  Access Paper or Ask Questions

A Multimodal Sentiment Dataset for Video Recommendation

Sep 17, 2021
Hongxuan Tang, Hao Liu, Xinyan Xiao, Hua Wu

Recently, multimodal sentiment analysis has seen remarkable advance and a lot of datasets are proposed for its development. In general, current multimodal sentiment analysis datasets usually follow the traditional system of sentiment/emotion, such as positive, negative and so on. However, when applied in the scenario of video recommendation, the traditional sentiment/emotion system is hard to be leveraged to represent different contents of videos in the perspective of visual senses and language understanding. Based on this, we propose a multimodal sentiment analysis dataset, named baiDu Video Sentiment dataset (DuVideoSenti), and introduce a new sentiment system which is designed to describe the sentimental style of a video on recommendation scenery. Specifically, DuVideoSenti consists of 5,630 videos which displayed on Baidu, each video is manually annotated with a sentimental style label which describes the user's real feeling of a video. Furthermore, we propose UNIMO as our baseline for DuVideoSenti. Experimental results show that DuVideoSenti brings new challenges to multimodal sentiment analysis, and could be used as a new benchmark for evaluating approaches designed for video understanding and multimodal fusion. We also expect our proposed DuVideoSenti could further improve the development of multimodal sentiment analysis and its application to video recommendations.

* 6 pages, 4 figures 

  Access Paper or Ask Questions

Synthetic Data and Simulators for Recommendation Systems: Current State and Future Directions

Dec 21, 2021
Adam Lesnikowski, Gabriel de Souza Pereira Moreira, Sara Rabhi, Karl Byleen-Higley

Synthetic data and simulators have the potential to markedly improve the performance and robustness of recommendation systems. These approaches have already had a beneficial impact in other machine-learning driven fields. We identify and discuss a key trade-off between data fidelity and privacy in the past work on synthetic data and simulators for recommendation systems. For the important use case of predicting algorithm rankings on real data from synthetic data, we provide motivation and current successes versus limitations. Finally we outline a number of exciting future directions for recommendation systems that we believe deserve further attention and work, including mixing real and synthetic data, feedback in dataset generation, robust simulations, and privacy-preserving methods.

* 7 pages, included in SimuRec 2021: Workshop on Simulation Methods for Recommender Systems at ACM RecSys 2021, October 2nd, 2021, Amsterdam, NL and online 

  Access Paper or Ask Questions