Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Advances and Challenges in Conversational Recommender Systems: A Survey

Feb 07, 2021
Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, Tat-Seng Chua

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

* 30 pages, 8 figures 

  Access Paper or Ask Questions

RELINE: Point-of-Interest Recommendations using Multiple Network Embeddings

Feb 02, 2019
Giannis Christoforidis, Pavlos Kefalas, Apostolos N. Papadopoulos, Yannis Manolopoulos

The rapid growth of users' involvement in Location-Based Social Networks (LBSNs) has led to the expeditious growth of the data on a global scale. The need of accessing and retrieving relevant information close to users' preferences is an open problem which continuously raises new challenges for recommendation systems. The exploitation of Points-of-Interest (POIs) recommendation by existing models is inadequate due to the sparsity and the cold start problems. To overcome these problems many models were proposed in the literature, but most of them ignore important factors such as: geographical proximity, social influence, or temporal and preference dynamics, which tackle their accuracy while personalize their recommendations. In this work, we investigate these problems and present a unified model that jointly learns users and POI dynamics. Our proposal is termed RELINE (REcommendations with muLtIple Network Embeddings). More specifically, RELINE captures: i) the social, ii) the geographical, iii) the temporal influence, and iv) the users' preference dynamics, by embedding eight relational graphs into one shared latent space. We have evaluated our approach against state-of-the-art methods with three large real-world datasets in terms of accuracy. Additionally, we have examined the effectiveness of our approach against the cold-start problem. Performance evaluation results demonstrate that significant performance improvement is achieved in comparison to existing state-of-the-art methods.


  Access Paper or Ask Questions

UGRec: Modeling Directed and Undirected Relations for Recommendation

May 10, 2021
Xinxiao Zhao, Zhiyong Cheng, Lei Zhu, Jiecai Zheng, Xueqing Li

Recommender systems, which merely leverage user-item interactions for user preference prediction (such as the collaborative filtering-based ones), often face dramatic performance degradation when the interactions of users or items are insufficient. In recent years, various types of side information have been explored to alleviate this problem. Among them, knowledge graph (KG) has attracted extensive research interests as it can encode users/items and their associated attributes in the graph structure to preserve the relation information. In contrast, less attention has been paid to the item-item co-occurrence information (i.e., \textit{co-view}), which contains rich item-item similarity information. It provides information from a perspective different from the user/item-attribute graph and is also valuable for the CF recommendation models. In this work, we make an effort to study the potential of integrating both types of side information (i.e., KG and item-item co-occurrence data) for recommendation. To achieve the goal, we propose a unified graph-based recommendation model (UGRec), which integrates the traditional directed relations in KG and the undirected item-item co-occurrence relations simultaneously. In particular, for a directed relation, we transform the head and tail entities into the corresponding relation space to model their relation; and for an undirected co-occurrence relation, we project head and tail entities into a unique hyperplane in the entity space to minimize their distance. In addition, a head-tail relation-aware attentive mechanism is designed for fine-grained relation modeling. Extensive experiments have been conducted on several publicly accessible datasets to evaluate the proposed model. Results show that our model outperforms several previous state-of-the-art methods and demonstrate the effectiveness of our UGRec model.

* Accepted as a long paper in SIGIR 2021 

  Access Paper or Ask Questions

A Unified Framework for Cross-Domain and Cross-System Recommendations

Aug 18, 2021
Feng Zhu, Yan Wang, Jun Zhou, Chaochao Chen, Longfei Li, Guanfeng Liu

Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most existing CDR and CSR approaches are single-target, namely, there is a single target dataset, which can only help the target dataset and thus cannot benefit the source dataset. In this paper, we focus on three new scenarios, i.e., Dual-Target CDR (DTCDR), Multi-Target CDR (MTCDR), and CDR+CSR, and aim to improve the recommendation accuracy in all datasets simultaneously for all scenarios. To do this, we propose a unified framework, called GA (based on Graph embedding and Attention techniques), for all three scenarios. In GA, we first construct separate heterogeneous graphs to generate more representative user and item embeddings. Then, we propose an element-wise attention mechanism to effectively combine the embeddings of common entities (users/items) learned from different datasets. Moreover, to avoid negative transfer, we further propose a Personalized training strategy to minimize the embedding difference of common entities between a richer dataset and a sparser dataset, deriving three new models, i.e., GA-DTCDR-P, GA-MTCDR-P, and GA-CDR+CSR-P, for the three scenarios respectively. Extensive experiments conducted on four real-world datasets demonstrate that our proposed GA models significantly outperform the state-of-the-art approaches.

* 14 pages, this paper has been accepted as a regular paper in an upcoming issue of the Transactions on Knowledge and Data Engineering (TKDE) 

  Access Paper or Ask Questions

Per-Instance Algorithm Selection for Recommender Systems via Instance Clustering

Dec 30, 2020
Andrew Collins, Laura Tierney, Joeran Beel

Recommendation algorithms perform differently if the users, recommendation contexts, applications, and user interfaces vary even slightly. It is similarly observed in other fields, such as combinatorial problem solving, that algorithms perform differently for each instance presented. In those fields, meta-learning is successfully used to predict an optimal algorithm for each instance, to improve overall system performance. Per-instance algorithm selection has thus far been unsuccessful for recommender systems. In this paper we propose a per-instance meta-learner that clusters data instances and predicts the best algorithm for unseen instances according to cluster membership. We test our approach using 10 collaborative- and 4 content-based filtering algorithms, for varying clustering parameters, and find a significant improvement over the best performing base algorithm at alpha=0.053 (MAE: 0.7107 vs LightGBM 0.7214; t-test). We also explore the performances of our base algorithms on a ratings dataset and empirically show that the error of a perfect algorithm selector monotonically decreases for larger pools of algorithm. To the best of our knowledge, this is the first effective meta-learning technique for per-instance algorithm selection in recommender systems.


  Access Paper or Ask Questions

FaiRIR: Mitigating Exposure Bias from Related Item Recommendations in Two-Sided Platforms

Apr 01, 2022
Abhisek Dash, Abhijnan Chakraborty, Saptarshi Ghosh, Animesh Mukherjee, Krishna P. Gummadi

Related Item Recommendations (RIRs) are ubiquitous in most online platforms today, including e-commerce and content streaming sites. These recommendations not only help users compare items related to a given item, but also play a major role in bringing traffic to individual items, thus deciding the exposure that different items receive. With a growing number of people depending on such platforms to earn their livelihood, it is important to understand whether different items are receiving their desired exposure. To this end, our experiments on multiple real-world RIR datasets reveal that the existing RIR algorithms often result in very skewed exposure distribution of items, and the quality of items is not a plausible explanation for such skew in exposure. To mitigate this exposure bias, we introduce multiple flexible interventions (FaiRIR) in the RIR pipeline. We instantiate these mechanisms with two well-known algorithms for constructing related item recommendations -- rating-SVD and item2vec -- and show on real-world data that our mechanisms allow for a fine-grained control on the exposure distribution, often at a small or no cost in terms of recommendation quality, measured in terms of relatedness and user satisfaction.

* This work has been accepted as a regular paper in IEEE Transactions on Computational Social Systems 2022 (IEEE TCSS'22) 

  Access Paper or Ask Questions

Personalized Transfer of User Preferences for Cross-domain Recommendation

Oct 22, 2021
Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin, Qing He

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages. The code has been available at \url{https://github.com/easezyc/WSDM2022-PTUPCDR}.

* Accepted by WSDM 2022 

  Access Paper or Ask Questions

<<
96
97
98
99
100
101
102
103
104
105
106
107
108
>>