Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Leveraging Two Types of Global Graph for Sequential Fashion Recommendation

May 30, 2021
Yujuan Ding, Yunshan Ma, Wai Keung Wong, Tat-Seng Chua

Sequential fashion recommendation is of great significance in online fashion shopping, which accounts for an increasing portion of either fashion retailing or online e-commerce. The key to building an effective sequential fashion recommendation model lies in capturing two types of patterns: the personal fashion preference of users and the transitional relationships between adjacent items. The two types of patterns are usually related to user-item interaction and item-item transition modeling respectively. However, due to the large sets of users and items as well as the sparse historical interactions, it is difficult to train an effective and efficient sequential fashion recommendation model. To tackle these problems, we propose to leverage two types of global graph, i.e., the user-item interaction graph and item-item transition graph, to obtain enhanced user and item representations by incorporating higher-order connections over the graphs. In addition, we adopt the graph kernel of LightGCN for the information propagation in both graphs and propose a new design for item-item transition graph. Extensive experiments on two established sequential fashion recommendation datasets validate the effectiveness and efficiency of our approach.

  Access Paper or Ask Questions

HieRec: Hierarchical User Interest Modeling for Personalized News Recommendation

Jun 08, 2021
Tao Qi, Fangzhao Wu, Chuhan Wu, Peiru Yang, Yang Yu, Xing Xie, Yongfeng Huang

User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interest is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.

* ACL 2021 

  Access Paper or Ask Questions

Addressing Item-Cold Start Problem in Recommendation Systems using Model Based Approach and Deep Learning

Jun 18, 2017
Ivica Obadić, Gjorgji Madjarov, Ivica Dimitrovski, Dejan Gjorgjevikj

Traditional recommendation systems rely on past usage data in order to generate new recommendations. Those approaches fail to generate sensible recommendations for new users and items into the system due to missing information about their past interactions. In this paper, we propose a solution for successfully addressing item-cold start problem which uses model-based approach and recent advances in deep learning. In particular, we use latent factor model for recommendation, and predict the latent factors from item's descriptions using convolutional neural network when they cannot be obtained from usage data. Latent factors obtained by applying matrix factorization to the available usage data are used as ground truth to train the convolutional neural network. To create latent factor representations for the new items, the convolutional neural network uses their textual description. The results from the experiments reveal that the proposed approach significantly outperforms several baseline estimators.

  Access Paper or Ask Questions

Multi-Sample based Contrastive Loss for Top-k Recommendation

Sep 01, 2021
Hao Tang, Guoshuai Zhao, Yuxia Wu, Xueming Qian

The top-k recommendation is a fundamental task in recommendation systems which is generally learned by comparing positive and negative pairs. The Contrastive Loss (CL) is the key in contrastive learning that has received more attention recently and we find it is well suited for top-k recommendations. However, it is a problem that CL treats the importance of the positive and negative samples as the same. On the one hand, CL faces the imbalance problem of one positive sample and many negative samples. On the other hand, positive items are so few in sparser datasets that their importance should be emphasized. Moreover, the other important issue is that the sparse positive items are still not sufficiently utilized in recommendations. So we propose a new data augmentation method by using multiple positive items (or samples) simultaneously with the CL loss function. Therefore, we propose a Multi-Sample based Contrastive Loss (MSCL) function which solves the two problems by balancing the importance of positive and negative samples and data augmentation. And based on the graph convolution network (GCN) method, experimental results demonstrate the state-of-the-art performance of MSCL. The proposed MSCL is simple and can be applied in many methods. We will release our code on GitHub upon the acceptance.

* 12 pages,7 figures,6 tables 

  Access Paper or Ask Questions

Sparse Feature Factorization for Recommender Systems with Knowledge Graphs

Jul 29, 2021
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Alberto Carlo Maria Mancino

Deep Learning and factorization-based collaborative filtering recommendation models have undoubtedly dominated the scene of recommender systems in recent years. However, despite their outstanding performance, these methods require a training time proportional to the size of the embeddings and it further increases when also side information is considered for the computation of the recommendation list. In fact, in these cases we have that with a large number of high-quality features, the resulting models are more complex and difficult to train. This paper addresses this problem by presenting KGFlex: a sparse factorization approach that grants an even greater degree of expressiveness. To achieve this result, KGFlex analyzes the historical data to understand the dimensions the user decisions depend on (e.g., movie direction, musical genre, nationality of book writer). KGFlex represents each item feature as an embedding and it models user-item interactions as a factorized entropy-driven combination of the item attributes relevant to the user. KGFlex facilitates the training process by letting users update only those relevant features on which they base their decisions. In other words, the user-item prediction is mediated by the user's personal view that considers only relevant features. An extensive experimental evaluation shows the approach's effectiveness, considering the recommendation results' accuracy, diversity, and induced bias. The public implementation of KGFlex is available at

  Access Paper or Ask Questions

Recommender systems inspired by the structure of quantum theory

Jan 22, 2016
Cyril Stark

Physicists use quantum models to describe the behavior of physical systems. Quantum models owe their success to their interpretability, to their relation to probabilistic models (quantization of classical models) and to their high predictive power. Beyond physics, these properties are valuable in general data science. This motivates the use of quantum models to analyze general nonphysical datasets. Here we provide both empirical and theoretical insights into the application of quantum models in data science. In the theoretical part of this paper, we firstly show that quantum models can be exponentially more efficient than probabilistic models because there exist datasets that admit low-dimensional quantum models and only exponentially high-dimensional probabilistic models. Secondly, we explain in what sense quantum models realize a useful relaxation of compressed probabilistic models. Thirdly, we show that sparse datasets admit low-dimensional quantum models and finally, we introduce a method to compute hierarchical orderings of properties of users (e.g., personality traits) and items (e.g., genres of movies). In the empirical part of the paper, we evaluate quantum models in item recommendation and observe that the predictive power of quantum-inspired recommender systems can compete with state-of-the-art recommender systems like SVD++ and PureSVD. Furthermore, we make use of the interpretability of quantum models by computing hierarchical orderings of properties of users and items. This work establishes a connection between data science (item recommendation), information theory (communication complexity), mathematical programming (positive semidefinite factorizations) and physics (quantum models).

  Access Paper or Ask Questions

Deep Learning-based Online Alternative Product Recommendations at Scale

Apr 15, 2021
Mingming Guo, Nian Yan, Xiquan Cui, San He Wu, Unaiza Ahsan, Rebecca West, Khalifeh Al Jadda

Alternative recommender systems are critical for ecommerce companies. They guide customers to explore a massive product catalog and assist customers to find the right products among an overwhelming number of options. However, it is a non-trivial task to recommend alternative products that fit customer needs. In this paper, we use both textual product information (e.g. product titles and descriptions) and customer behavior data to recommend alternative products. Our results show that the coverage of alternative products is significantly improved in offline evaluations as well as recall and precision. The final A/B test shows that our algorithm increases the conversion rate by 12 percent in a statistically significant way. In order to better capture the semantic meaning of product information, we build a Siamese Network with Bidirectional LSTM to learn product embeddings. In order to learn a similarity space that better matches the preference of real customers, we use co-compared data from historical customer behavior as labels to train the network. In addition, we use NMSLIB to accelerate the computationally expensive kNN computation for millions of products so that the alternative recommendation is able to scale across the entire catalog of a major ecommerce site.

  Access Paper or Ask Questions

Graphing else matters: exploiting aspect opinions and ratings in explainable graph-based recommendations

Jul 07, 2021
Iván Cantador, Andrés Carvallo, Fernando Diez, Denis Parra

The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, current recommendation methods based on graph embeddings have shown state-of-the-art performance. These methods commonly encode latent rating patterns and content features. Different from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items. Furthermore, we also provide examples of the applicability of recommendations utilizing aspect opinions as explanations in a visualization dashboard, which allows obtaining information about the most and least liked aspects of similar users obtained from the embeddings of an input graph.

  Access Paper or Ask Questions

Contextual Recommendations and Low-Regret Cutting-Plane Algorithms

Jun 09, 2021
Sreenivas Gollapudi, Guru Guruganesh, Kostas Kollias, Pasin Manurangsi, Renato Paes Leme, Jon Schneider

We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems. We wish to learn a hidden $d$-dimensional value $w^*$. Every round, we are presented with a subset $\mathcal{X}_t \subseteq \mathbb{R}^d$ of possible actions. If we choose (i.e. recommend to the user) action $x_t$, we obtain utility $\langle x_t, w^* \rangle$ but only learn the identity of the best action $\arg\max_{x \in \mathcal{X}_t} \langle x, w^* \rangle$. We design algorithms for this problem which achieve regret $O(d\log T)$ and $\exp(O(d \log d))$. To accomplish this, we design novel cutting-plane algorithms with low "regret" -- the total distance between the true point $w^*$ and the hyperplanes the separation oracle returns. We also consider the variant where we are allowed to provide a list of several recommendations. In this variant, we give an algorithm with $O(d^2 \log d)$ regret and list size $\mathrm{poly}(d)$. Finally, we construct nearly tight algorithms for a weaker variant of this problem where the learner only learns the identity of an action that is better than the recommendation. Our results rely on new algorithmic techniques in convex geometry (including a variant of Steiner's formula for the centroid of a convex set) which may be of independent interest.

  Access Paper or Ask Questions