The main approaches for simulating FMCW radar are based on ray tracing, which is usually computationally intensive and do not account for background noise. This work proposes a faster method for FMCW radar simulation capable of generating synthetic raw radar data using generative adversarial networks (GAN). The code and pre-trained weights are open-source and available on GitHub. This method generates 16 simultaneous chirps, which allows the generated data to be used for the further development of algorithms for processing radar data (filtering and clustering). This can increase the potential for data augmentation, e.g., by generating data in non-existent or safety-critical scenarios that are not reproducible in real life. In this work, the GAN was trained with radar measurements of a motorcycle and used to generate synthetic raw radar data of a motorcycle traveling in a straight line. For generating this data, the distance of the motorcycle and Gaussian noise are used as input to the neural network. The synthetic generated radar chirps were evaluated using the Frechet Inception Distance (FID). Then, the Range-Azimuth (RA) map is calculated twice: (1\textsuperscript{st}) based on synthetic data using this GAN and (2\textsuperscript{nd}) based on real data. Based on these RA maps, an algorithm with adaptive threshold and edge detection is used for object detection. The results have shown that the data is realistic in terms of coherent radar reflections of the motorcycle and background noise based on the comparison of chirps, the RA maps and the object detection results. Thus, the proposed method in this work has shown to minimize the simulation-to-reality gap for the generation of radar data.
Detecting dental diseases through panoramic X-rays images is a standard procedure for dentists. Normally, a dentist need to identify diseases and find the infected teeth. While numerous machine learning models adopting this two-step procedure have been developed, there has not been an end-to-end model that can identify teeth and their associated diseases at the same time. To fill the gap, we develop YOLOrtho, a unified framework for teeth enumeration and dental disease detection. We develop our model on Dentex Challenge 2023 data, which consists of three distinct types of annotated data. The first part is labeled with quadrant, and the second part is labeled with quadrant and enumeration and the third part is labeled with quadrant, enumeration and disease. To further improve detection, we make use of Tufts Dental public dataset. To fully utilize the data and learn both teeth detection and disease identification simultaneously, we formulate diseases as attributes attached to their corresponding teeth. Due to the nature of position relation in teeth enumeration, We replace convolution layer with CoordConv in our model to provide more position information for the model. We also adjust the model architecture and insert one more upsampling layer in FPN in favor of large object detection. Finally, we propose a post-process strategy for teeth layout that corrects teeth enumeration based on linear sum assignment. Results from experiments show that our model exceeds large Diffusion-based model.
This paper presents "FireFly", a synthetic dataset for ember detection created using Unreal Engine 4 (UE4), designed to overcome the current lack of ember-specific training resources. To create the dataset, we present a tool that allows the automated generation of the synthetic labeled dataset with adjustable parameters, enabling data diversity from various environmental conditions, making the dataset both diverse and customizable based on user requirements. We generated a total of 19,273 frames that have been used to evaluate FireFly on four popular object detection models. Further to minimize human intervention, we leveraged a trained model to create a semi-automatic labeling process for real-life ember frames. Moreover, we demonstrated an up to 8.57% improvement in mean Average Precision (mAP) in real-world wildfire scenarios compared to models trained exclusively on a small real dataset.
Aphid infestation poses a significant threat to crop production, rural communities, and global food security. While chemical pest control is crucial for maximizing yields, applying chemicals across entire fields is both environmentally unsustainable and costly. Hence, precise localization and management of aphids are essential for targeted pesticide application. The paper primarily focuses on using deep learning models for detecting aphid clusters. We propose a novel approach for estimating infection levels by detecting aphid clusters. To facilitate this research, we have captured a large-scale dataset from sorghum fields, manually selected 5,447 images containing aphids, and annotated each individual aphid cluster within these images. To facilitate the use of machine learning models, we further process the images by cropping them into patches, resulting in a labeled dataset comprising 151,380 image patches. Then, we implemented and compared the performance of four state-of-the-art object detection models (VFNet, GFLV2, PAA, and ATSS) on the aphid dataset. Extensive experimental results show that all models yield stable similar performance in terms of average precision and recall. We then propose to merge close neighboring clusters and remove tiny clusters caused by cropping, and the performance is further boosted by around 17%. The study demonstrates the feasibility of automatically detecting and managing insects using machine learning models. The labeled dataset will be made openly available to the research community.
Astounding performance of Transformers in natural language processing (NLP) has delighted researchers to explore their utilization in computer vision tasks. Like other computer vision tasks, DEtection TRansformer (DETR) introduces transformers for object detection tasks by considering the detection as a set prediction problem without needing proposal generation and post-processing steps. It is a state-of-the-art (SOTA) method for object detection, particularly in scenarios where the number of objects in an image is relatively small. Despite the success of DETR, it suffers from slow training convergence and performance drops for small objects. Therefore, many improvements are proposed to address these issues, leading to immense refinement in DETR. Since 2020, transformer-based object detection has attracted increasing interest and demonstrated impressive performance. Although numerous surveys have been conducted on transformers in vision in general, a review regarding advancements made in 2D object detection using transformers is still missing. This paper gives a detailed review of twenty-one papers about recent developments in DETR. We begin with the basic modules of Transformers, such as self-attention, object queries and input features encoding. Then, we cover the latest advancements in DETR, including backbone modification, query design and attention refinement. We also compare all detection transformers in terms of performance and network design. We hope this study will increase the researcher's interest in solving existing challenges towards applying transformers in the object detection domain. Researchers can follow newer improvements in detection transformers on this webpage available at: https://github.com/mindgarage-shan/trans_object_detection_survey
Three-dimensional (3D) reconstruction of head Computed Tomography (CT) images elucidates the intricate spatial relationships of tissue structures, thereby assisting in accurate diagnosis. Nonetheless, securing an optimal head CT scan without deviation is challenging in clinical settings, owing to poor positioning by technicians, patient's physical constraints, or CT scanner tilt angle restrictions. Manual formatting and reconstruction not only introduce subjectivity but also strain time and labor resources. To address these issues, we propose an efficient automatic head CT images 3D reconstruction method, improving accuracy and repeatability, as well as diminishing manual intervention. Our approach employs a deep learning-based object detection algorithm, identifying and evaluating orbitomeatal line landmarks to automatically reformat the images prior to reconstruction. Given the dearth of existing evaluations of object detection algorithms in the context of head CT images, we compared ten methods from both theoretical and experimental perspectives. By exploring their precision, efficiency, and robustness, we singled out the lightweight YOLOv8 as the aptest algorithm for our task, with an mAP of 92.91% and impressive robustness against class imbalance. Our qualitative evaluation of standardized reconstruction results demonstrates the clinical practicability and validity of our method.
Perception that involves multi-object detection and tracking, and trajectory prediction are two major tasks of autonomous driving. However, they are currently mostly studied separately, which results in most trajectory prediction modules being developed based on ground truth trajectories without taking into account that trajectories extracted from the detection and tracking modules in real-world scenarios are noisy. These noisy trajectories can have a significant impact on the performance of the trajectory predictor and can lead to serious prediction errors. In this paper, we build an end-to-end framework for detection, tracking, and trajectory prediction called ODTP (Online Detection, Tracking and Prediction). It adopts the state-of-the-art online multi-object tracking model, QD-3DT, for perception and trains the trajectory predictor, DCENet++, directly based on the detection results without purely relying on ground truth trajectories. We evaluate the performance of ODTP on the widely used nuScenes dataset for autonomous driving. Extensive experiments show that ODPT achieves high performance end-to-end trajectory prediction. DCENet++, with the enhanced dynamic maps, predicts more accurate trajectories than its base model. It is also more robust when compared with other generative and deterministic trajectory prediction models trained on noisy detection results.
Astronomical images provide information about the great variety of cosmic objects in the Universe. Due to the large volumes of data, the presence of innumerable bright point sources as well as noise within the frame and the spatial gap between objects and satellite cameras, it is a challenging task to classify and detect the celestial objects. We propose an Adaptive Thresholding Method (ATM) based segmentation and Back Propagation Neural Network (BPNN) based cosmic object detection including a well-structured series of pre-processing steps designed to enhance segmentation and detection.
Arbitrary-oriented object detection is a relatively emerging but challenging task. Although remarkable progress has been made, there still remain many unsolved issues due to the large diversity of patterns in orientation, scale, aspect ratio, and visual appearance of objects in aerial images. Most of the existing methods adopt a coarse-grained fixed label assignment strategy and suffer from the inconsistency between the classification score and localization accuracy. First, to align the metric inconsistency between sample selection and regression loss calculation caused by fixed IoU strategy, we introduce affine transformation to evaluate the quality of samples and propose a distance-based label assignment strategy. The proposed metric-aligned selection (MAS) strategy can dynamically select samples according to the shape and rotation characteristic of objects. Second, to further address the inconsistency between classification and localization, we propose a critical feature sampling (CFS) module, which performs localization refinement on the sampling location for classification task to extract critical features accurately. Third, we present a scale-controlled smooth $L_1$ loss (SC-Loss) to adaptively select high quality samples by changing the form of regression loss function based on the statistics of proposals during training. Extensive experiments are conducted on four challenging rotated object detection datasets DOTA, FAIR1M-1.0, HRSC2016, and UCAS-AOD. The results show the state-of-the-art accuracy of the proposed detector.
DeepFakes have raised serious societal concerns, leading to a great surge in detection-based forensics methods in recent years. Face forgery recognition is the conventional detection method that usually follows a two-phase pipeline: it extracts the face first and then determines its authenticity by classification. Since DeepFakes in the wild usually contain multiple faces, using face forgery detection methods is merely practical as they have to process faces in a sequel, i.e., only one face is processed at the same time. One straightforward way to address this issue is to integrate face extraction and forgery detection in an end-to-end fashion by adapting advanced object detection architectures. However, as these object detection architectures are designed to capture the semantic information of different object categories rather than the subtle forgery traces among the faces, the direct adaptation is far from optimal. In this paper, we describe a new end-to-end framework, Contrastive Multi-FaceForensics (COMICS), to enhance multi-face forgery detection. The core of the proposed framework is a novel bi-grained contrastive learning approach that explores effective face forgery traces at both the coarse- and fine-grained levels. Specifically, the coarse-grained level contrastive learning captures the discriminative features among positive and negative proposal pairs in multiple scales with the instruction of the proposal generator, and the fine-grained level contrastive learning captures the pixel-wise discrepancy between the forged and original areas of the same face and the pixel-wise content inconsistency between different faces. Extensive experiments on the OpenForensics dataset demonstrate our method outperforms other counterparts by a large margin (~18.5%) and shows great potential for integration into various architectures.